Keywords:-

Keywords: Nonparametric estimation, kernel function, error variance.

Article Content:-

Abstract

This study adopts a nonparametric approach in the estimation of a finite population error variance in the setting where the variance is a constant (homoscedastic) using a model-based technique under simple random sampling without replacement (SRSWOR). A mean square analysis of the  estimator has been conducted, including the asymptotic behaviour of the  estimator and the results show that the asymptotic distribution in a homoscedastic setting is asymptotically unbiased and consistent. The performance of the developed estimator is compared to that of other existing estimators using real data. R statistical software was utilized to analyze data and numerical results presented graphically for selected models.       

References:-

References

Alharbi, Ye.F. (2011). Error Variance Estimation in nonparametric regression models. University of Birmingham, MPhil dissertation.

Dette, H.Munk, A. and Wagner (1998).Estimating the variance in non-parametric regression-What is a reasonable choice? , Journal of the Royal Statistical society B 60:751-764.

Dorfman, A.H. (1992).Non parametric regression for Estimating Totals in finite populations. proceeding of the section on survey Research methods, American statistical Association Alexandria Washington DC,622-625.

Gasser, T., Sroka.L. and Jennen-Steinmetz C.(1986). Residual Variance and Residual pattern in non-linear regression. Biometrika 73, 625-633

Gasser.T. and Muller, H. (1981). Kernel Estimation of Regression Functions. In smoothing Techniques for curve estimation springer-Ver lag, pp.23-68,1979.

Hall. P., Kay, J.W and Tetterington, D.M (1990).Asymptotically optimal difference-based estimation of Variance in nonparametric regression. Biometrika 77, 521-528.

Hall P. and Carroll, R.J. (1986).Variance function estimation in regression. The effect of estimating the mean. J.Roy. statist.soc.ser.B. (methodological) 51, 3-14.

Bonface Miya Malenje, Winnie Onsongo Mokeira, Romanus Odhiambo, George Orwa. A Multiplicative Bias Corrected Nonparametric Estimator For a Finite Population Mean. American Journal of Theoretical and Applied statistics.vol.5, No.5,2016, pp.317-325.

Muller, U.U., Shick, A. and Welfemer, W. (2003). Estimating the error Variance in nonparametric regression by a covariate-matched U-statistics. statistics 37,179-188.

Rice .J. (1984).Bandwidth choice for nonparametric regression.Ann.statist.12, 1215-1230.

Wahba, G. (1990). Spline models for Observational Data, SIAM, Philadelphia .CBMS-NSF Regional Conference Series in Applied Mathematics, Vol.59.

Zheng, H., & Little, R.J. (2003). Penalized spline model-based estimation of the finite populations total from probability-proportional-to-size samples. Journal of of statistics-stockholm-, 19(2), 99-118.

Downloads

Citation Tools

How to Cite
Vincent, O., Waititu, H., & Cornelious, N. O. (2022). Nonparametric Estimation of Error Variance under Simple Random Sampling without Replacement. International Journal Of Mathematics And Computer Research, 10(10), 2925-2933. https://doi.org/10.47191/ijmcr/v10i10.02