Keywords:-
Article Content:-
Abstract
Climatic characteristics involving weather conditions affect malaria transmission in most deltaic regions of the world. Here, we propose a simple mosquito-human interaction model incorporating features of seasonal malaria pathogenesis. We obtain the basic reproduction number and show in our analysis some conditions for local and global stability of the solution, suggesting that intervention strategies should be targeted at reducing seasonal contacts of mosquitoes and humans. The model simulations compare well with malaria infection data.
References:-
References
Selvaraj, P., Edward A., Wenger, E. A., Gerardin, J. Seasonality and heterogeneity of malaria transmission determine success of interventions in high-endemic settings: a modeling study. BMC Infectious Diseases (2018), 18:413. Doi.org/10.1186/s12879-018-3319-y
Roca-Feltrer, A., Schellenberg, J. R. A., Smith, L. et al. A simple method for defining malaria seasonality. Malar J 8, 276 (2009). https://doi.org/10.1186/1475-2875-8-276
P.G. McQueen and F.E. McKenzie, Age-structured red blood cell susceptibility and the dynamics of malaria infections, Proc. Natl. Acad. Sci. 101(24) (2004) 9161-9166.
R. W. Snow, J. A. Omumbo, B. Lowe, C. S. Molyneux, J. O. Obiero, A. Palmer, M. W. Weber, M. Pinder, B. Nahlen, C. Obonyo, Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet , 349 (1997), 1650-1654.
WHO, World Malaria Report 2019
WHO, World Malaria Report, 2021. [online]. [Viewed 10/06/2022]
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021.
First Malaria Vaccine – A Major Milestone Despite Huddles Ahead. WebMD. WebMD, 2 December 2021. Web. 30 May 2022.
WHO, World Health Report, 2005
WHO, World Health Report, 2009
WHO Global Malaria Programme. WHO policy recommendation: Seasonal malaria Chemoprevention for Plasmodium falciparum control in highly seasonal transmission areas of the Sahel sub-region in Africa. Geneva: World Health Organization; 2012.
M. E. Coldiron, L. V. Seidlein, R. F. Grais. Seasonal malaria chemoprevention: Successes and missed opportunities. Malar J 16, 481 (2017).
Nigeria Demographic and Health Survey online Retrieved, 20-03-2011,
http://www.measuredhs.com/pubs/pdf/GF15/GF15.pdf
MSF, Doctors Without Boarders. MSF Launches Program to Combat Malaria in the Niger Delta, Press release, retrieved 2011-01-21, http://www.doctorswithoutborders.org/press/release.cfm?id=514
A. P. P. Wyse, L. Bevilacqua, M. Rafikov. Simulating malaria model for different treatment intensities in a variable environment. Elsevier, 206 (2007), 322-330. Online Retrieved 10/06/2022. DOI: 10.5540/tema.2006.07.02.0391
B. Dembele, A. Friedman, A. Yakubu, Malaria model with periodic mosquito birth and death rates, Journal of Biological Dynamics 4 (2009), 430-445.
Zheng, T. T., Nie, L. F., Teng, Z. et al. Modeling seasonal variation for mosquito-borne disease in the tropical monsoon environment. Adv Differ Equ 2020, 469 (2020).
https://doi.org/10.1186/s13662-020-02807-6
Nguyen, M., Howes, R.E., Lucas, T.C. et al. Mapping malaria seasonality in Madagascar using health facility data. BMC Med 18, 26 (2020). https://doi.org/10.1186/s12916-019-1486-3
V. Yiga, H. Nampala, J. Tumwiine, "Analysis of the Model on the Effect of Seasonal Factors on Malaria Transmission Dynamics", Journal of Applied Mathematics, vol. 2020, Article. ID 8885558, 19 pages, 2020. https://doi.org/10.1155/2020/8885558
T. Bakary, S. Boureima, T. Sado (2018). A mathematical model of malaria transmission in a periodic environment, Journal of Biological Dynamics, 12:1, 400-432.
DOI: 10.1080/17513758.2018.1468935
C. Mukandavire, G. Musuka, G. Magombedze, Z. Mukandavire, International Journal of Applied Mathematics and Computation 2, 3 (2010), 1–16. http://ijamc.psit.in
N. C. Grassly, C. Fraser, Seasonal infectious disease epidemiology.Proc. R. Soc. B 273( 2006) 2541-2550
Wikipedia, Geography of Nigeria. Retrieved: 2011-08-05 http://en.wikipedia.org/wikiGeography_of_Nigeria#Vegetation_of_the_Niger_Delta
WHO, Malaria fact sheet No 94, online Retrieved: 03-01-2011 from
http://www.who.int/mediacentre/factsheets/fs094/en/
S.W. Lindsay and W.J.M. Martens, Malaria in the African highlands: past, present and future, Bull. WHO 76 (1998), 33-45.
G. Zhou, N. Minakawa, A.K. Githeko and G. Yan, Association between climate variability and malaria epidemics in the east African highlands, Proc. Natl. Acad. Sci. USA 101 (2004), 2375-2380.
J. P. LaSalle, Stability theory for ordinary differential equations. J. Differential Equations 4 (1968), 57-65.