Keywords:-

Keywords: Contact metric generalized ( k ,  ) -space form, ( k ,  ) -contact metric manifold, Einstein manifold, Concircular curvature tensor.

Article Content:-

Abstract

In this paper, we study  -concircularly flat and pseudo-concircularly flat 3 -dimensional contact metric generalized ( k ,  ) -space form and such a space form with concircular curvature tensor C satisfying the condition C ( , X )  S = 0 , where S denotes the Ricci curvature tensor. MSC(2010): 53C25, 53D15.

References:-

References

P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 141 (2004),

-183.

P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geom. and its

application 26 (2008), 656-666.

P. Alegre and A. Carriazo, Submanifolds of generalized Sasakian-space-forms, Taiwanese J. Math.,

(2009), 923-941.

P. Alegre and A. Carriazo, Generalized Sasakian space forms and conformal change of metric, Results

Math. 59 (2011), 485-493.

D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., 509, Springer-Verlag,

D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity

condition, Israel J. Math., 19 (1995), 189-214.

D. E. Blair, J. -S. Kim and M. M. Tripathi, On the concircular curvature tensor of a contact metric

manifold, J. Korean Math. Soc., 42 (2005), No. 5, pp. 883-892.

E. Boeckx, A full classification of contact metric ( k ,  ) -spaces, Illinois J. Math., 44 (2000), 212-219.

A. Carriazo, V .M. Molina and M. M. Tripathi, Generalized ( k ,  ) -Space Forms, Mediterr.J. Math.,

DOI 10.1007/s00009-012-0196-2.U. C. De and A. Sarkar, Some results on generalized Sasakian-space-forms, Thai J. Math. 8(1) (2010),

-10.

U. C. De and A. Sarkar, On the projective curvature tensor of generalized Sasakian-space-forms,

Quaestiones Mathematicae, 33(2) (2010), 245-252.

U. K. Kim, Conformally flat generalized Sasakian-space-forms and locally symmetric generalized

Sasakian-space-forms, Note di matemetica 26 (2006), 55-67.

T. Koufogiorgos, Contact Riemannian manifolds with constant  -sectional curvature, Tokyo J. Math.,

(1997), 55-67.

D. G. Prakasha, On generalized Sasakian-space-forms with Weyl-conformal curvature tensor,

Lobacheviskii J. Math., 33 (3) (2012), 223-228.

D. G. Prakasha, S. K. Hui and K. K. Mirji, On 3-Dimensional Contact Metric Generalized ( k ,  )

-Space Forms, Int. J. Math. Math. Sci., Volume 2014, Article ID 797162, 6 pages.

C. R. Premalatha and H. G. Nagaraja, Recurrent generalized ( k ,  ) –space forms, Acta Universitatis

Apluensis, No. 38/2014, pp. 95-108.

M. M. Tripathi and J. -S. Kim, On the concircular curvature tensor of a ( k ,  ) -manifold, Balkan J. Geom.

Appl., 9, No. 5, (2004), pp. 104-114.

Downloads

Citation Tools

How to Cite
Prakasha, D. G., & Mirji, K. (2016). The Concircular Curvature Tensor On Contact Metric Generalized ( k ,  ) -Space Forms. International Journal Of Mathematics And Computer Research, 4(05), 1404-1410. Retrieved from https://ijmcr.in/index.php/ijmcr/article/view/48