Keywords:-
Article Content:-
Abstract
In this paper, we introduce the E-Banhatti Sombor index and the modified E-Banhatti Sombor index and their corresponding exponentials of a graph. Also we compute these newly defined E-Banhatti Sombor indices and their corresponding exponentials for wheel graphs, friendship graphs, tetrameric 1,3-adamantane and honeycomb networks. Furthermore, we establish some properties of the E-Banhatti Sombor index.
References:-
References
V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
V.R.Kulli, Graph indices, in Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society, M. Pal. S. Samanta and A. Pal, (eds.) IGI Global, USA (2020) 66-91.
I.Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
V.R.Kulli, Multiplicative connectivity indices of nanostructures, LAP LEMBERT Academic Publishing (2018).
V.R.Kulli, New direction in the theory of graph index in graphs, submitted.
V.R.Kulli, FE-Banhatti index, submitted.
V.R.Kulli, Hyper E-Banhatti indices of certain networks, submitted.
V.R.Kulli, Computation of E-Banhatti Nirmala indices of tetrameric 1,3-Adamantane, submitted.
H.Wiener, Structural determination of parattin boiling points, Journal of the American Chemical Society, 69(1) (1947) 17-20.
I.Gutman, Y.N.Yeh, S.L.Leeand Y.L.Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651-661.
P.W.Fowler, G.Caporossi and P.Hansen, Distance matrices, Wiener indices and related invariants of fullerenes, The Journal of Physical Chemistry A, 105(25) (2001) 6232-6242.
H.S.Ramane, K.P.Narayankar, S.S.Shirkol and A.B.Ganagi, Terminal wiener index of line graphs, MATCH Commun. Math. Comput. Chem., 69 (2013) 775-782.
M.Zeryouh, M.Marraki and M.Essalih, Wiener and terminal Wiener indices of some rooted trees, Applied Mathematical Sciences, 8 (2014) 4995-5002
I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. vol. 17, pp 535-538, 1972.
K.C.Das, I.Gutman and B.Horoldagva, Comparing Zagreb indices and coindices of trees, MATCH Commun. Math. Comput. Chem., 67 (2012) 189-198.
T.Doslic, B.Furtula, A.Graovac, I.Gutman, S.Moradi and Z.Yarahmadi, On vertex degree based molecular structure descriptors, MATCH Commun. Math. Comput. Chem., 66 (2011) 613-626.
G.H.Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem., 65 (2011) 79-84.
S.Nikolic, G.Kovacevic, A.Milicevic and N.Trinajstic, The Zagreb indices 30 years after, Croat.Chem. Acta, 76(2003) 113-124.
V.R. Kulli, Revan indices of oxide and honeycomb networks, International Journal of Mathematics and its Applications, 5(4-E) (2017) 663-667.
A.Q.Baig, M.Nadeem and W.Gao, Revan and hyper Revan indices of Octahedral and icosahdral networks, Applied Mathematics and Nonlinear Sciences, 3(1) (2018) 33-40.
P.Kandan, E.Chandrasekaran and
M.Priyadharshini, The Revan weighted Szeged index of graphs, Journal of Emerging Technologies and Innovative Research, 5(9) (2018) 358-366.
R.Aguilar-Sanchez, I.F.Herrera-Gonzalez, J.A.Mendez-Bermudez and J.M.Sigarreta, Revan degree indices on random graphs,
arXiv:2210.04749v1 [math.CO] 10 Oct 2022.
S.Ediz, Maximal graphs of the first reverse Zagreb beta index, TWMS J. Appl.Eng. Math. 8 (2018) 306-310.
V.R.Kulli, The reverse Zagreb and reverse hyper Zagreb indices and their polynomials of rhombus silicate networks, Annals of Pure and Applied Mathematics, 16(1) (2018) 47-51.
W.Gao, M.Younas, A.Farooq, A ur Rehman and W.Nazeer, Some Reverse degree based topological indices and polynomials of dendrimers, Mathematics, 6 (2018) 214.
V.R.Kulli, The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1) (2017).
M.Aruvi, M.Joseph and E.Ramganesh, The second Gourava index of some graph products, Advances in Mathematics: Scientific Journal 9(12) (2020) 10241-10249.
B.Basavanagoud and S.Policepatil, Chemical applicability of Gourava and hyper Gourava indices, Nanosystems: Physics, Chemistry, Mathematics 12(2) (2021) 142-150.
V.R.Kulli, V.Lokesha, S.Jain and M.Manjunath, The Gourava index of four operations on graphs, International J. Math. Combin. 4 (2018) 65-76.
V.R.Kulli, On K Banhatti indices of graphs, Journal of Computer and Mathematical Sciences, 7 (2016) 213-218.
V.R.Kulli, B.Chaluvaraju and H.S.Boregowda, Some bounds on connectivity Banhatti index of graphs, Palestine Journal of Mathematics, 3(1) (2015) 11-19.
V. Results for H-Naphtalenic Nanotubes In this section we consider a family of H-Naphtalenic nanotubes. This nanotube is a trivalent decoration having a sequence of C6, C6, C4, C6, C6, C4, … in the first row and a sequence of C6, C8, C6, C8, … in other row. This nanotube is denoted by NHPX[m, n], where m is the number of pair of hexagons in first row and nis the number of alternative hexagons in a column as shown in Figure 4.
n + 6 6n – 6 n – 1
Y.C.Kwun, J.Ahmad, W.Nazeer, W.Khalid and S.M.Kang, Topological invariants of molecular graph of grapheme, JP Journal of Geometry and Topology, 21(2) (2018) 95-103.
I.Gutman, V.R.Kulli, B.Chaluvaraju and H.S.Boregowda, On Banhatti and Zagreb indices, Journal of the international Mathematical Virtual Institute, 7 (2017) 53-67.
W.Wang, M.Naeem, A.Rauf, A.Riasat, A.Aslam and K.A.Yannick, On analysis of Banhatti indices for hyaluronic acid curcumin and hydroxychloroquine, Journal of Chemistry, 2021 Article ID 7468857 10 pages.
D.Zhao, M.A.Zahid, R.Irfan. M.Arshad, A.Fahad, Z.Ahmad and L.Li, Banhatti, Revan and hyper indices of silicon carbide Si2C3-III[n, m], Open Chemistry, 19 (2021) 646-652.
Downloads
Citation Tools
Most read articles by the same author(s)
- V.R. Kulli, HDR-Nirmala Index , International Journal Of Mathematics And Computer Research: Vol 10 No 07 (2022): VOLUME 10 ISSUE 07