Keywords:-

Keywords: Common fixed point, modular space, ρ-compatible, generalized quasi-contraction of integral type

Article Content:-

Abstract

In this paper we study the existence of common fixed point for r-compatible mapping satisfying a generalized quasi contraction condition  of integral type in modular spaces  Our results extend and generalize the results of  Beygmohammadi and Razani [4] and Razani and Moradi [25].

References:-

References

Ait, A.Taleb and E. Hanebaly, A fixed point theorem and its application to integral equations in modular function spaces, Proc. Amer. Math. Soc.,128, (2000), 419-426.

Azadifar, B, et al.: Integral type contractions in modular metric spaces, J. Inequal. Appl., 483(2013).

Banach,S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, FundamentaMathematicae, 3 (1922), 133-181.

Beygmohammadi,M. and Razani,A., Two fixed point theorems for mappings satisfying a generalcontractive condition of integral type in modular space, International Journal of Mathematics and Mathematical Sciences, Article ID 317107, 10 (2010), 10 Pages.

Branciari, A., A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Sci. 29 (2002), 531-536.

Chirasak Mongkolkeha and Poom Kumam, Some Fixed point results for generalized weak contraction mappings in modular spaces, International Journal of Analysis, Vol. 2013, Article ID 247378, 6 Pages.

Hanaa Kerim, Wasfi Shatanawi and abdalla Tallafha, Common fixed point theorems via integral type contractionin modular metric spaces, U.P.B. Sci. Bull., Series A, 83(3) (2021), 125-136.

Jungck,G., Commuting mappings and, Amer. Math. Monthly, 83(1976), 261-263.

Jungck,G., Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences, 9 (4) (1986), 771-779.

Kaneko,H., Single-valued and multi-valued f-contractions, Boll. Un. Mat. Ital., 6 (1985), 29-33.

Kaneko, H. and Sessa, S., Fixed point theorems for compatible multi-valued and single-valued mappings, Int. J. Math. Sci., 12 (1989), 257-262.

Khamsi, M.A., Uniform non-compact convexity fixed point property in modular spaces, Mathematica Japonica, 10(3) (1994), 439-450.

Khamsi,M.A., Fixed point theory in modular function spaces, Recent Advances in Metric Fixed Point Theory, Universidad de Seville, Spain, 48 (1995), 31-57.

Khamsi, M.A.,Koztowski,W.M. and Reich,S., Fixed point theory in modular function spaces, Non-linear Analysis Theory, Methods and Applications, 14 (1990), 935-953.

Khamsi,M.A., Quasi contraction mappings in modular spaces without 2-condition, Fixed Point Theory and Applications, Article ID 916187 (2008), 6-Pages.

Kumam,P., Some geometrical properties and fixed point theorems in modular spaces, International Conference on Fixed Point Theory and Applications, Yokohama Publishers, Yokohama, Japan, (2004), 173-188.

Kumam,P., Fixed point theorems for non-expansive mappings in modular spaces, Archivum Mathematicum, 40 (4) (2004), 345-353.

Kumam,P., On non-square and Jordan-van Neumann constants of modular spaces, Southeast Asian Bulletin of Mathematics,.30(1), (2006), 69-77.

Musielak,J. and Orlicz,W., On modular spaces, Studia Mathematica, Vol. 18 (1959), 49-65.

Musielak,J. Orlicz spaces and modular Spaces, Vol.1034 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1983.

Nakano,H., Modular semi-ordered linear spaces, Vol. 1 of Tokyo Mathematical Book Series, Maruzen, Tokyo, Japan, 1950.

Nakano,H., Topology of linear Topological spaces, Vol. 3 of Tokyo Mathematical Book Series, Maruzen,Tokyo, Japan, 1951.

Nawab Hussain, Marwan A. Kutbi, Nazra Sultana and Iram Iqba, Weak contractive integral inequalities and fixed points in modular metric spaces, Journal of Inequalities and Applications, (2016), 2016:89.

Rahimpoor, H.,Ebadian, A.,Gordji, M.E. and Zohri, A., Common fixed point theorems in modular metric spaces, Int. J. of Pure and Appl. Math., 99 (2015), 373-383.

Razani, A. and Moradi, R., Common fixed point theorem of integral type in modular spaces, Bulletin of Iranian Mathematical Society, Vol.35, 2 (2009), 11-24.

Rhoades, B. E., Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Sci., 63 (2003), 4007-4013.

Singh, S.P. and Meade, B.A., On common fixed point theorem, Bull. Aust. Mat. Soc.,16(1977),49-53.

Vijayraju,P., Rhoades,B. E. and Mohanra,R., A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Int. J. Math. Sci., 15 (2005), 2359-2364.

Downloads

Citation Tools

How to Cite
Saluja, A. S. (2022). Integral Type Generalized Contraction Mappings in Modular Spaces. International Journal Of Mathematics And Computer Research, 10(12), 3052-3056. https://doi.org/10.47191/ijmcr/v10i12.08