Keywords:-

Keywords: Invariant, Lie group analysis, Multiplier, Nonlinear heat-like, Station- ary solution,, Soliton, Symmetry reduction

Article Content:-

Abstract

We study a nonlinear heat like equation from a lie symmetry stand point. Heat equation have been employed to study ow of current, information and propagation of heat. The Lie group approach is used on the system to obtain symmetry reductions and the reduced systems studied for exact solutions. Solitary waves have been constructed by use of a linear span of time and space translation symmetries. We also compute conservation laws using multiplier approach and by a conservation theorem due to Ibragimov.

References:-

References

Arrigo, D. J. Symmetry analysis of dierential equations: an introduction. John Wiley & Sons, 2015.

Bluman, G. and Anco, S. Symmetry and integration methods for dierential equations, volume 154. Springer Science & Business Media, 2008.

Bluman, G. W. and Kumei, S. Symmetries and dierential equations, volume 81. Springer Science & Business Media, 1989.

Bluman, G. W., Cheviakov, A. F., and Anco, S. C. Applications of symmetry methods to partial dierential equations, volume 168. Springer, 2010.

Cannon, J. R. The one-dimensional heat equation. Number 23. Cambridge University Press, 1984.

Ibragimov, N. Elementary Lie group analysis and ordinary dierential equations. Wiley, 1999.

Ibragimov, N. H. CRC handbook of Lie group analysis of dierential equations, volume 1-3. CRC press, 1994.

Ibragimov, N. H. Selected works. Volume 1-4. ALGA publications, Blekinge Institute of Technology, 2006-2009.

Ibragimov, N. H. A new conservation theorem. Journal of Mathematical Analysis and Applications, 333(1):311328, 2007.

Ibragimov, N. H. A Practical Course in Dierential Equations and Mathematical Modelling: Classical and New Methods. Nonlinear Mathematical Models. Symmetry and Invariance Principles. World Scientic Publishing Company, 2009.

Khalique, C. M. and Abdallah, S. A. Coupled Burgers equations governing polydispersive sedimentation; a lie symmetry approach. Results in Physics, 16 , 2020.

LeVeque, R. J. Numerical methods for conservation laws, volume 3. Springer, 1992.

Lie, S. Vorlesungen ber Dierentialgleichungen mit bekannten innitesimalen Transformationen. BG Teubner, 1891.

Mhlanga, I. and Khalique, C. Travelling wave solutions and conservation laws of the Korteweg-de Vries-Burgers Equation with Power Law Nonlinearity. Malaysian Journal of Mathematical Sciences, 11:18, 2017.

Noether, E. Invariant variations problem. Nachr. Konig. Gissel. Wissen, Gottingen. Math. Phys. Kl, pages 235257, 1918.

Olver, P. J. Applications of Lie groups to dierential equations, volume 107. Springer Science & Business Media, 1993.

Ovsyannikov, L. Lectures on the theory of group properties of dierential equations. World Scientic Publishing Company, 2013.

Owino, J. O. A group approach to exact solutions and conservation laws of classical burger’s equation. International Journal of Mathematics And Computer Research, 10(9):28942909, 2022.

Owino, J. O. Group analysis on one-dimensional heat equation. International Journal of Advanced Multidisciplinary Research and Studies, 2(5):525 540, 2022.

Owino, J. O. Group invariant solutions and conserved vectors for a special kdv type equation. International Journal of Advanced Multidisciplinary Research and Studies, 2(5):926, 2022.

Owino, J. O. An application of lie point symmetries in the study of potential burger’s equation. International Journal of Advanced Multidisciplinary Research and Studies, 2(5):191207, 2022.

Owino, J. O. and Okelo, B. Lie group analysis of a nonlinear coupled system of korteweg-de vries equations. European Journal of Mathematical Analysis, 1: 133150, 2021.

Owuor, J. Conserved quantities of a nonlinear coupled system of korteweg-de vries equations. International Journal of Mathematics And Computer Research, 10(5):26732681, 2022.

Owuor, J. Exact symmetry reduction solutions of a nonlinear coupled system of korteweg-de vries equations. International Journal of Advanced Multidisciplinary Research and Studies, 2(3):7687, 2022.

P.E, H. Symmetry methods for dierential equations: a beginner’s guide, volume 22. Cambridge University Press, 2000.

Wazwaz, A.-M. Partial dierential equations and solitary waves theory.

Springer Science & Business Media, 2010.

Downloads

Citation Tools

How to Cite
Owino, J. (2023). Group Analysis of a Nonlinear Heat-Like Equation. International Journal Of Mathematics And Computer Research, 11(1), 3113-3131. https://doi.org/10.47191/ijmcr/v11i1.03