Keywords:-
Article Content:-
Abstract
BED model (Biological Effective Dose) for Hyperfractionation TPO was optimized with Pareto-Multiobjective Genetic Algorithms (GA) software. Secondly, the NEffective (Effective Tumor Population Clonogens Number) model optimization for breast cancer clonogens parameters determination in TPO (Treatment Planning Optimization) is carried out with 3D Graphical and Interior Optimization methods. BED model (Biological Effective Dose) for Hyperfractionation TPO was optimized with Pareto-Multiobjective GA software. Results comprise imaging process series and numerical values of NEffective model for breast cancer parameters. Additional results demonstrate Pareto-Multiobjective GA BED model both with Pareto-Optimal Front graphics, charts and numerical dose fractionation datasets. For all these findings, supplementary new recent applications with 3D Isodoses TPO with AAA (Anisotropic Analytic Algorithm) model wedge filters dose delivery is shown. Modern RT treatment breast cancer, and tumors in general for Fractionation-dose protocols are explained.
References:-
References
Casesnoves F (2022) . Radiotherapy Wedge Filter AAA Model 18 Mev- Dose Delivery 3D Simulations with Several Software Systems for Medical Physics Applications. Applications. Biomed J Sci & Tech Res 40(5). DOI: 10.26717/BJSTR.2022.46.007337.
Casesnoves F (2016) . Mathematical Exact 3D Integral Equation Determination for Radiotherapy Wedge Filter Convolution Factor with Algorithms and Numerical Simulations.Journal of Numerical Analysis and Applied Mathematics 1(2): 39-59. ISSN Online: 2381-7704.
Casesnoves F (2015) . Radiotherapy Conformal Wedge Computational Simulations,Optimization Algorithms, and Exact Limit Angle Approach. International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET) 1(2): 353-362. Print ISSN : 2395-1990. Online ISSN : 2394-4099.
Casesnoves F (2019) . Improvements in Simulations for Radiotherapy Wedge Filter dose and AAA-Convolution Factor Algorithms. International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET) 6(4): 194-219. Print ISSN: 2395-1990 . Online ISSN : 2394-4099.
Casesnoves F (2011) . Exact/Approximated Geometrical Determinations of IMRT Photon Pencil-Beam Path Through Alloy Static Wedges in Radiotherapy Using Anisothropic Analytic Algorithm (AAA). Peer-reviewed ASME Conference Paper. ASME 2011 International Mechanical Eng Congress. Denver. USA. IMECE2011-65435.
Casesnoves F (2012) . Geometrical Determinations of Limit angle (LA) related to maximum Pencil-Beam Divergence Angle in Radiotherapy Wedges. Peer-reviewed ASME Conference Paper. ASME 2012 International Mechanical Eng Congress. Houston. USA. IMECE2012-86638.
Casesnoves F (2013) . A Conformal Radiotherapy Wedge Filter Design. Computational and Mathematical Model/Simulation’ . Peer-Reviewed Poster IEEE (Institute for Electrical and Electronics Engineers), Northeast Bioengineering Conference. Syracuse New York, USA. April 6th, 2013. Peer-Reviewed Poster Session on 6th April 2013. Sessions 1 and 3 with Poster Number 35. Page 15 of Conference Booklet Printed.
Casesnoves F (2014) . Mathematical and Geometrical Formulation/Analysis for Beam Limit Divergence Angle in Radiotherapy Wedges. Peer-Reviewed International Engineering Article. International Journal of Engineering and Innovative Technology (IJEIT) . 3(7). ISSN: 2277-3754 . ISO 9001:2008 Certified.
Casesnoves F (2014) . Geometrical determinations of IMRT photon pencil-beam path in radiotherapy wedges and limit divergence angle with the Anisotropic Analytic Algorithm (AAA) Casesnoves, F. Peer- Reviewed scientific paper, both Print and online. International Journal of Cancer Therapy and Oncology 2 (3): 02031. DOI:10.14319/IJCTO.0203.1. Corpus ID: 460308.
Casesnoves F (2014) . Radiotherapy Conformal Wedge Computational Simulations and Nonlinear Optimization Algorithms. Peer-reviewed Article, Special Double-Blind Peer-reviewed paper by International Scientific Board with contributed talk. Official Proceedings of Bio- and Medical Informatics and Cybernetics: BMIC 2014 in the context of the 18th Multi-conference on Systemics, Cybernetics and Informatics: WMSCI 2014 July 15 - 18, 2014, Orlando, Florida, USA. ISBN: 978-1-941763-03-2 (Collection). ISBN: 978-1-941763-10-0 (Volume II) .
Casesnoves F (2007) . Large-Scale Matlab Optimization Toolbox (MOT) Computing Methods in Radiotherapy Inverse Treatment Planning’. High Performance Computing Meeting. Nottingham University. Conference Poster.
Casesnoves F (2008) . A Computational Radiotherapy Optimization Method for Inverse Planning with Static Wedges. High Performance Computing Conference. Nottingham University. Conference Poster.
Casesnoves F (2015) . Radiotherapy Conformal Wedge Computational Simulations, Optimization Algorithms, and Exact Limit Angle Approach. International Journal of Scientific Research in Science, Engineering and Technology 1(2). Print ISSN : 2395-1990, Online ISSN : 2394-4099.
Casesnoves F (2015) . Radiotherapy Standard/Conformal Wedge IMRT-Beamlet Divergence Angle Limit Exact Method, Mathematical Formulation, and Bioengineering Applications. International Article-Poster. Published in Proceedings of Conference. 41st Annual Northeast Bioengineering Conference. Rensselaer Polytechnic Institute. Troy, New York USA, April, p. 17-19.
DOI:10.1109/NEBEC.2015.7117152 . Corpus ID: 30285689.
Casesnoves F (2015) . Radiotherapy Standard/Conformal Wedge IMRT-Beamlet Divergence Angle Limit Exact Method, Mathematical Formulation, and Bioengineering Applications. IEEE (Institute for Electrical and Electronics Engineers), International Article-Poster. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7117152.
Casesnoves F (2015) . Abstract-Journal. ‘Radiotherapy Standard/ Conformal Wedge IMRT-Beamlet Divergence Angle Limit Exact Method, Mathematical Formulation. International Conference on Significant Advances in Biomedical Engineering. 252nd OMICS International Conference 5(1). Francisco Casesnoves, J Bioengineer & Biomedical Sci 2015, 5:1. http://dx.doi.org/10.4172/2155-9538.S1.003 .
Casesnoves, F (2001) . Determination of absorbed doses in common radio diagnostic explorations. 5th National Meeting of Medical Physics. Madrid, Spain. September 1985. treatment Planning’.
Casesnoves, F (2001). Master Thesis in Medical Physics. Eastern Finland University. Radiotherapy Department of Kuopio University Hospital and Radiotherapy Physics Grouversity-Kuopio. Defense approved in 2001. Library of Eastern finland University. Finland.
Casesnoves F (2013) . A Conformal Radiotherapy Wedge Filter Design. Computational and Mathematical Model/Simulation’. Peer-Reviewed Poster IEEE (Institute for Electrical and Electronics Engineers), Northeast Bioengineering Conference. Syracuse New York, USA. Presented in the Peer-Reviewed Poster Session on 6th April 2013. Sessions 1 and 3 with Poster Number 35. Page 15 of Conference Booklet. April 6th, 2013.
Casesnoves F (2022) . Radiotherapy Biological Tumor Control Probability Integral Equation Model with Analytic Determination. International Journal of Mathematics and Computer Research 10(8): 2840-2846.
DOI: https://doi.org/10.47191/ijmcr/v10i10.01 .
Casesnoves F (2022) . Radiotherapy Wedge Filter AAA Model 3D Simulations For 18 Mev 5 cm-Depth Dose with Medical Physics Applications”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT) 8(1): 261-274. ISSN : 2456-3307 (www.ijsrcseit.com) . DOI: https://doi.org/10.32628/CSEIT228141 .
Walsh S (2011) . Radiobiological modelling in Radiation Oncology. PhD Thesis. School of Physics. National University of Galway. http://hdl.handle.net/10379/3027 .
Chapman D, Nahum, A (2015) . Radiotherapy Treatment Planning, Linear- Quadratic Radiobiology. CRC Press. ISBN 9780367866433 .
Mayles, W, Nahum A (2015) . Rosenwald, J. Editors. Handbook of Radiotherapy Physics. Second Edition. CRC Press. ISBN 9780367192075 . International Standard Book Number-13: 978-1-4987-2146-2 .
Nahum, A, Webb, S (1993) . A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Physics in Medicine and Biology; v. 38(6); p. 653-666 . ISSN 0031-9155 .
Haydaroglu, A, Ozyigit G (2013) . Principles and Practice of Modern Radiotherapy Techniques in Breast Cancer. Springer. DOI:10.1007/978-1-4614-5116-7 .
Casesnoves, F (2019-20) . Die numerische Reuleaux-Methode Rechnerische und dynamische Grundlagen mit Anwendungen (Erster Teil). ISBN-13 : 978-620-0-89560-8, ISBN-10: 6200895600. Publishing House: Sciencia Scripts. 2019-20.
Ulmer W, Harder, D (1997) . Corrected Tables of the Area Integral I(z) for the Triple Gaussian Pencil Beam Model. Z Med Phys 7: 192-193. DOI: https://doi.org/10.1016/S0939-3889(15)70255-2 .
Ulmer W, Harder, D (1995) A triple Gaussian pencil beam model for photon beam treatment planning. Med. Phys 5: 25-30.
DOI :10.1016/S0939-3889(15)70758-0.
Ulmer W, Harder D (1996) . Applications of a triple Gaussian pencil beam model for photon beam treatment planning. Med Phys 6: 68-74.
https://doi.org/10.1016/S0939-3889(15)70784-1 .
Ma, C, Lomax, T (2013) . Proton and Carbon Ion Therapy. CRC Press.
DOI: https://doi.org/10.1201/b13070 .
Censor, Y, Zenios, S (1997) . Parallel Optimization: Theory, Algorithms and Applications’. UOP. DOI:10.12694/SCPE.V3I4.207 .Corpus ID:
.
Ulmer, W, Pyyry, J, Kaissl, W (2005) . A 3D photon superposition/ convolution algorithm and its foundation on results of Monte Carlo calculations. Phys Med Biol, p. 50. DOI: 10.1088/0031-9155/50/8/010.
Ulmer, W, Harder, D (1997) . Applications of the triple Gaussian Photon Pencil Beam Model to irregular Fields, dynamical Collimators and circular Fields. Phys Med Biol. DOI: https://doi.org/10.1023/B:JORA.0000015192.56164.a5 .
Haddad K, Anjak O, Yousef B (2019) . Neutron and high energy photon fluence estimation in CLINAC using gold activation foils. Reports of practical oncology and radiotherapy 24: 41-46. DOI: 10.1016/j.rpor.2018.08.009 .
Sievinen J, Waldemar U, Kaissl W. AAA Photon Dose Calculation Model in Eclipse™. Varian Medical Systems Report. Rad #7170A.
Vagena E, Stoulos S, Manolopoulou M (2016) . GEANT4 Simulations on Medical LINAC operation at 18MV: experimental validation based on activation foils. Radiation Physics and Chemistry. DOI:10.1016/j.radphyschem.2015.11.030 .
Ethics for Researchers (2013) . EU Commission. Directorate-General for Research and Innovation. Science in society/Capacities FP7.
https://data.europa.eu/doi/10.2777/7491 .
Casesnoves F (1981) . Surgical Pathology I course class notes and clinical practice of Surgical Pathology Madrid Clinical Hospital [ Professor Surgeon Dr Santiago Tamames Escobar ]. 4th academic year course for graduation in Medicine and Surgery. Lessons and practice Breast Cancer Surgical and Medical Treatment. 1980-1981. Madrid Complutense University.
Tamames Escobar, S (2000) . Cirugia/ Surgery: Aparato Digestivo. Aparato Circulatorio. Aparato Respiratorio/ Digestive System. Circulatory System. Respiratory System (Spanish Edition). ISBN 10: 8479034955. ISBN 13: 9788479034955 .
Silvia C Formenti, Sandra Demaria (2013) . Combining Radiotherapy and Cancer Immunotherapy: A Paradigm Shift Silvia C. Formenti, Sandra Demaria. J Natl Cancer Inst 105: 256-265. DOI : 10.1093/jnci/djs629.
Numrich R, (2010) . The computational energy spectrum of a program as it executes. Journal of Supercomputing 52. DOI:10.1007/s11227-009-0273-x .
European Commission, Directorate-General for Research (2021). Unit L3. Governance and Ethics. European Research Area. Science and Society.
ALLEA (2017) . The European Code of Conduct for Research Integrity, Revised Edn.; ALLEA: Berlin Barndenburg Academy of Sciences.
Good Research Practice (2017) Swedish Research Council. ISBN 978-91- 7307-354-7.
Ulmer W, Schaffner, B (2011) . Foundation of an analytical proton beamlet model for inclusion in a general proton dose calculation system. Radiation Physics and Chemistry 80: 378-389. DOI:10.1016/j.radphyschem.2010.10.006 .
Sharma, S (2008) . Beam Modification Devices in Radiotherapy. Lecture at Radiotherapy Department, PGIMER. India.
Barrett, A, Colls (2009) . Practical Radiotherapy Planning. Fourth Edition. Hodder Arnold. ISBN 9780340927731.
Ahnesjö A, Saxner M, A Trepp (1992) . A pencil beam model for photon dose calculations. Med Phys, pp. 263- 273. DOI:10.1118/1.596856.
Brahime A (2000) . Development of Radiation Therapy Optimization. Acta Oncologica 39(5). DOI: 10.1080/028418600750013267 .
Bortfeld T, Hong T, Craft D, Carlsson F (2008) . Multicriteria Optimization in Intensity-Modulated Radiation Therapy Treatment Planning for Locally Advanced Cancer of the Pancreatic Head. International Journal of Radiation Oncology and Biology Physics 72(4).
DOI:10.1016/j.ijrobp.2008.07.015.
Brown, B, and cols (2014) . Clinician-led improvement in cancer care (CLICC) - testing a multifaceted implementation strategy to increase evidence-based prostate cancer care: phased randomised controlled trial - study protocol. Implementation Science 9: 64. DOI: https://doi.org/10.1186/1748-5908-9-64 .
Bortifield, T (2006) . IMRT: a review and preview. Phys Med Biol 51(2006): R363–R379. DOI: 10.1088/0031-9155/51/13/R21 .
Censor, Y (1996) . Mathematical Optimization for the Inverse problem of Intensity-Modulated Radiation Therapy. Laboratory Report, Department of Mathematics, University of Haifa, Israel.
Capizzello A, Tsekeris PG, Pakos EE, Papathanasopoulou V, Pitouli EJ (2006) . ‘Adjuvant Chemo-Radiotherapy in Patients with Gastric Cancer. Indian Journal of Cancer 43(4). ISSN: 019-509X.
Tamer Dawod, EM Abdelrazek, Mostafa Elnaggar, Rehab Omar (2014) . Dose Validation of Physical Wedged symmetric Fields in Artiste Linear Accelerator. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology 3: 201-209.
DOI: 10.4236/ijmpcero.2014.34026 .
Do SY, David A, Bush Jerry D Slater (2010) . Comorbidity-Adjusted Survival in Early-Stage Lung Cancer Patients Treated with Hypofractioned Proton Therapy. Journal of Oncology. DOI: 10.1155/2010/251208 .
Ehrgott M, Burjony M. (1999). Radiation Therapy Planning by Multicriteria Optimization. Department of Engineering Science. University of Auckland. New Zealand. Conference Paper.
Ezzel, G (1996) . Genetic and geometric optimization of three-dimensional radiation therapy treatment planning. Med Phys 23: 293- 305. DOI: 10.1118/1.597660.
Effective Health Care, (2008) . Number 13. Comparative Efectiveness of Therapies for Clinically Localized Prostate cancer. Bookshelf ID: NBK554842 .
Hansen, P (1998) . Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion’. SIAM monographs on mathematical modelling and computation. ISBN-13: 978-0898714036 .
Hashemiparast, S, Fallahgoul H (2011) . Modified Gauss quadrature for ill-posed integral transform. International Journal of Mathematics and Computation 13(11). ISSN: 0974-570X .
Isa, N (2014). Evidence based radiation oncology with existing technology. Reports of practical oncology and radiotherapy 19: 259-266. DOI: 10.1016/j.rpor.2013.09.002
Johansson KA, Mattsson S, Brahme A, Turesson I (2003) Radiation Therapy Dose Delivery’. Acta Oncologica 42(2): 2003.
DOI:10.1080/02841860310004922 .
Khanna P, Blais N, Gaudreau PO, Corrales-Rodriguez L (2016) . Immunotherapy Comes of Age in Lung Cancer, Clinical Lung Cancer. DOI: 10.1016/j.cllc.2016.06.006.
Kufer KH, Hamacher HW, Bortfeld T (2000). A multicriteria optimisation approach for inverse radiotherapy planning. University of Kaiserslautern, Germany. DOI: 10.1007/978-3-642-59758-9_10 .
Kirsch A (1996) . An introduction to the Mathematical Theory of Inverse Problems. Springer Applied Mathematical Sciences. Series E-ISSN2196-968X .
Luenberger, D (1989) . Linear and Nonlinear Programming (2nd Edn.). Addison-Wesley. ISBN-13 : 978-3030854492 .
Moczko, J, Roszak, A (2006) . Application of Mathematical Modeling in Survival Time Prediction for Females with Advanced Cervical cancer treated Radio-chemotherapy. Computational Methods in science and Technology 12(2). DOI: 10.12921/cmst.2006.12.02.143-147
Ragaz, J, Ivo A Olivotto, John J Spinelli, Norman Phillips, Stewart M Jackson, et al. (2005). Regional Radiation Therapy in Patients with High-risk Breast Cancer Receiving Adjuvant Chemotherapy: 20-Year Results of the Columbia Randomized Trial’. Journal of National Cancer Institute 97(2). DOI: 10.1093/jnci/djh297.
Steuer R (1986) . Multiple Criteria Optimization: Theory, Computation and Application. Wiley. https://doi.org/10.1002/oca.4660100109 .
Spirou SV, Chui CS (1998) . A gradient inverse planning algorithm with dose-volume constraints. Med Phys 25: 321-323. DOI: 10.1118/1.598202 .
Das I, and colls (1997) . Patterns of dose variability in radiation prescription of breast cancer. Radiotherapy and Oncology 44: 83-89. DOI: 10.1016/s0167-8140(97)00054-6
Casesnoves, F (2018). Practical Radiotherapy TPO course and practice with Cyberknife. Robotic simulations for breathing movements during radiotherapy treatment. Sigulda Radiotherapy Cyberknife Center. Latvia. Riga National Health Oncology Hospital Varian LINACs TPO practice/lessons several Varian LINACs. Riga Technical University Bioengineering Training-Course Nonlinear Life. August 2018.
Casesnoves, F. (2022). Radiotherapy Linear Quadratic Bio Model 3D Wedge Filter Dose Simulations for AAA Photon-Model [18 Mev, Z= 5,15 cm] with Mathematical Method System. Biomed J Sci & Tech Res 46(2)-2022. BJSTR. MS.ID.007337.
DOI: 10.26717/BJSTR.2022.46.007337 .
Casesnoves, F (1985) . Master in Philosophy Thesis at Medical Physics Department. Protection of the Patient in Routinary Radiological Explorations. Experimental Low Energies RX Dosimetry. Medicine Faculty. Madrid Complutense University. 1984-85.
Casesnoves, F (1983-5). Ionization Chamber Low Energies Experimental Measurements for M-640 General Electric RX Tube with Radcheck ionization camera, Radcheck Beam Kilovoltimeter and TLD dosimeters. Radiology Department practice and measurements. Madrid Central Defense Hospital. Medical Physics Department. Master in Philosophy Thesis. Medicine Faculty. Complutense University. Madrid.
Casesnoves, F (1985) . Determination of Absorbed Doses in Routinary Radiological Explorations. Medical Physics Conference organized by Medical Physics Society Proceedings Printed. San Lorenzo del Escorial. Madrid. September 1985.
Greening, J (1985). Fundamentals of Radiation Dosimetry. Taylor and Francis. Second Edition. 1985. DOI: https://doi.org/10.1201/9780203755198
International Commission of Radiation Protection (1977). Bulletin 26th . The International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection. Pergamon Press. Copyright © 1977 The International Commission on Radiological Protection .
Stanton, P ; Colls (1996) . Cell kinetics in vivo of human breast cancer. British Journal of Surgery 1996,83,98-102 .
DOI: https://doi.org/10.1002/bjs.1800830130 .
Hedman M, Bjork-Eriksson T, Brodin O, Toma-Dasu I (2013) . Predictive value of modelled tumour control probability based on individual measurements of in vitro radiosensitivity and potential doubling time. Br J Radiol 2013;86: 20130015. DOI:10.1259/bjr.20130015 .
Fowler, J. 21 years of Biologically Effective Dose.The British Journal of Radiology, 83 (2010), 554–568.
Marcu, L, and al. Radiotherapy and Clinical Radiobiology of Head and Neck Cancer. Series in Medical Physics and Biomedical Engineering. CRC Press. 2018.
Casesnoves, F. Radiotherapy 3D Isodose Simulations for Wedge Filter 18 Mev-Dose [ z = 5,15 cm ] with AAA Model with Breast Cancer Applications. International Journal on Research Methodologies in Physics and Chemistry (IJRPC) ISSN: 2349-7963 Volume: 9 Issue: 2 . 2022.