Keywords:-
Article Content:-
Abstract
In this paper, we review two properties of completeness known as the Bourbaki-completeness and cofinal Bourbaki-completeness in the setting of metric spaces. These notions came from new classes of generalized Cauchy sequences appearing when characterizing the so-called Bourbaki-boundedness in a similar way that Cauchy sequences characterize the totally boundedness. For the clustering of Bourbaki–Cauchy sequences and cofinally Bourbaki–Cauchy sequences, we have respectively what is call Bourbaki-completeness and cofinal Bourbaki-completeness of metric spaces. The topological problem of metrizability by means of a Bourbaki-complete or a cofinally Bourbaki-complete metric has also been considered. Finally, we present detailed review of some relationships and mutual differences between these kinds of completeness.
References:-
References
Arkhangel ′skii, A.V., and V.I. Ponomarev:(1984) Fundamentals of general topology, problems and exercises. - D. Reidel Publishing Co., Dordrecht.
Atsuji, M.: (1958) Uniform continuity of continuous functions of metric spaces. - Pacific J. Math. 8, 11–16. New types of completeness in metric spaces 757
Beer, G.: (1981) Which connected metric spaces are compact? - Proc. Amer. Math. Soc. 83, 1981, 807–811.
Beer, G.: (2012) Between the cofinally complete spaces and the UC spaces. - Houston J. Math. 38, 999–1015.
Beer, G., and S. Levi: (2008) Gap, excess and bornological convergence. - Set-Valued Anal. 16, 1347–1362.
Beer, G., and M. Segura: (2009) Well-posedness, bornologies, and the structure of metric spaces. - Appl. Gen. Topol. 10, 131–157.
Bourbaki, N.: (1966) Elements of mathematics, general topology, part 1. - Hermann, Paris,
Buhagiar, D., and I. Yoshioka: (2001) Ultracomplete topological spaces. - Acta Math. Hungar. 92, 2001, 19–26.
Čech, E.: (1937) On bicompact spaces. - Ann. of Math. 38, 823–844.
Corson, H.H.: (1958) The determination of paracompactness by uniformities. - Amer. J. Math. 80, 185–190.
Garrido, I., and A.S. Meroño: (2013) Uniformly metrizable bornologies. - J. Convex Anal. 20, 285–299.
Garrido, I., and A.S. Meroño: (2012) Some classes of bounded sets in metric spaces. - In: Con- tribuciones matemáticas en homenaje a Juan Tarrés, eds. M. Castrillón et al., Universidad Complutense de Madrid, Madrid, 179–186.
Hejcman, J.: (1959) Boundedness in uniform spaces and topological groups. - Czechoslovak Math. J. 9, 544–563.
Hohti, A.: (1981) On uniform paracompactness. - Ann. Acad. Sci. Fenn. Ser. A I Math. Diss. 36.
Howes, N.R.: (1971) On completeness. - Pacific J. Math. 38, 431–440.
Hueber, H.: (1981) On uniform continuity and compactnessin metric spaces.- Amer. Math. Monthly 88, 204–205.
Jain, T., and S. Kundu: Atsuji spaces: (2006) equivalent conditions. - Topology Proc. 30. 301–325.
M. Isabel Garrido and Ana S. Meron ̃o (2014) New Types of Completeness in Metric Spaces.-Annales Academic Scientiarum Fennicae Mathematica, Volume 39, 733-758.
Musaev, D.K.: (2007) Uniformly superparacompact, completely paracompact, and strongly para- compact uniform spaces. - J. Math. Sci. (N.Y.) 144, 2007, 4111–4122.
Njåstad, O.: (1965) On uniform spaces where all uniformly continuous functions are bounded. - Monatsh. Math. 69, 167–176. 758 M. Isabel Garrido and Ana S. Meroño
Pears, A.R.: (1975) Dimesion theory of general spaces. - Cambridge Univ. Press, Cambridge.
Rice, M.D.: (1977) A noteon uniform paracompactness.- Proc. Amer. Math. Soc. 62, 359–362.
Romaguera, S.: (1998) On cofinally complete metric spaces. - Questions Answers Gen. Topology 16, 165–170.
Smith, J.C.: (1978) Review of “A note on uniform paracompactness” by Michael D. Rice. - Math. Rev. 55.
Woods, R.G.: (1995) The minimun uniform compactification of a metric space. - Fund. Math. 147, 39–59.
Yasui, Y.: (1968) Unions of strongly paracompact spaces II. - Proc. Japan Acad. 44, 27–31. [37]
Yoshioka, I.: (2002) On the subsets of non locally compact points of ultracomplete spaces. - Com- ment. Math. Univ. Carolin. 43, 707–721.