Keywords:-

Keywords: Number theory; Summations.

Article Content:-

Abstract

The Fourier coefficients of the non-holomorphic Eisenstein cusp forms of the Laplace-Beltrami operator are here summed.

The summation is performed after the Dirichlet series related to the divisor function, after the properties of the meromorphic continuability; a new dependence on the Euler’s γ constant is also found.

References:-

References

Dennis A. Hejhal, The Selberg Trace Formula for PSL (2,R): Volume 2 (Lecture Notes in Mathematics), Springer nature, Hemsbach (Germany) (1983).

V. A. Bykovskii, On a summation formula in the spectral theory of automorphic functions and its applications in analytic number theory, Dokl. Akad. Nauk SSSR, 264:2 (1982), 275-277.

N. V. Kuznetsov, Convolution of Fourier coefficients of Eisenstein-Maass series, in: Automorphic Functions and Number Theory. I, J. Soy. Math., 29, No. 2 (1985).

A. I. Vinogradov and L. A. Takhtadzhyan,A. I. Vinogradov and L. A. Takhtadzhyan, The Zeta function of the additive divisor problem ans spectral decomposition of the automorphic laplacian, Journal of Soviet Mathematics volume 36 , pages57-78 (1987)

J.-M. Deshouillers and H. Iwaniec, An additive divisor problem, J. London Math. Soc. (2), 26, 1-14 (1982).

N. V. Kuznetsov, Spectral methods in arithmetical problems, in: Analytic Number Theory and Theory of Functions, J. Sov. Math., 18, No. 3 (1982).

N. V. Kuznetsov, The Petersson hypothesis for parabolic forms of weight zero and the Linnik hypothesis. I. A sum of Kloosterman sums, Math. Sb., , No. 3, 334-383 (1980).

Winfried Kohnen, Jyoti Sengupta, Nonvanishing of Symmetric Square L-Functions of Cusp Forms inside the Critical Strip,Proceedings of the American Mathematical Society, Vol. 128, No. 6 (Jun., 2000), pp. 1641-1646

G. Shimura: On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31, 75-98 (1975) MR 52:3064

D. Zagier: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, in ’Modular Functions of One Variable VI’ (eds. J.-P. Serre and D. Zagier), pp. 105-169, LNM no. 627, Springer, Berlin-Heidelberg-New York, 1976. MR 58:5525

S. Gelbart and H. Jacquet: A relation between automorphic representations of GL2 and GL3, Ann. Sci. E.N.S. IV ser.,11, 471-542 (1978) MR 81e:10025

W. Kohnen: Nonvanishing of Hecke L-functions associated to cusp forms inside the critical strip, J. of Number Theory vol. 67, no. 2, 182-189 (1997) MR 98j:11037.

H. Jacquet and J. A. Shalika: A nonvanishing theorem for zeta functions of GLn, Invent. Math. 38, 1-16 (1976/77) MR 55:5583

Ralph Phillips, Peter Sarnak, Geodesics in homology classes, Duke Math. J. 55(2): 287-297 1987.

R. Miatello, N. Wallach, The resolvent of the Laplacian on locally symmetric spaces, J. Differential Geom. 36(3): 663-698 (1992).

Downloads

Citation Tools

How to Cite
Lecian, O. M. (2023). Summation of the Fourier Coefficients of the Non-Holomorphic Eisenstein Cusp Series of the PSL(2,Z) Group. International Journal Of Mathematics And Computer Research, 11(1), 3190-3194. https://doi.org/10.47191/ijmcr/v11i1.11