Keywords:-
Article Content:-
Abstract
In this paper, a common fixed point theorem for a pair of weakly compatible mappings in the setting of digital metric space is proved with a supportive example. Our result extends and improves the result of Ozgur Ege et al. [2].
References:-
References
A. Rani, K. Jyoti, and A. Rani, Common fixed point theorems in digital metric spaces, Int. j. sci. eng. Res, 7 (2016), 1704-1716.
C. Park, O. Ege, S. Kumar, D. Jain, & J. R. Lee, Fixed point theorems for various contraction conditions in digital metric spaces. Journal of Computational Analysis and Applications, 26(8), (2019), 1451-1458.
G. Jungck, Commuting mappings and fixed point, Amer. Math. Monthly, 83 (1976), 261- 263.
G. Jungck, Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences, 9 (1986), 771-779.
G. Jungck, Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences, 11 (1988), 285-288.
L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging V 10 (1999), 51-62.
L. Boxer, digitally continuous functions, Pattern Recognition Letters, 15 (1994), 833-839.
O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. of Non. Sci. and Appli., 8 (2015), 237-245.
R. Rani, Common fixed point theorem in digital spaces using contraction mappings, int. j. stat. appl. Math, 3 (2018), 140-142.
Rosenfeld, Digital topology, Amer. Math. Monthly, 86 (1979), 76-87.
S. Dalal, Common fixed point results for weakly compatible map in digital metric spaces, Sch J. Phys. Math. Stat., 4 (2017), 196-201.
S. Kumar, D. Jain, O. Ege, D. Y. Shin and C. Park, Commuting and compatible mappings in digital metric spaces, J. Fixed Point Theory Appl., 22 (2020), 1-16.
S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math, 32 (1982), 149-153.