Keywords:-
Article Content:-
Abstract
- Let M be a graded leftA-module and M∗ the associate complex of M. Then :
- If M∗ is noetherian (resp. artinian) then M∗ is strongly hopfian (resp. strongly cohopfian);
- If M∗ is strongly hopfian (resp. cohopfian), then M∗ is hopfian (resp. cohopfian);
- Let M be a graded leftA-module, M∗ the associate complex of M, N a submodule of M, and N∗ fully invariant subcomplex of M∗. Then :
If N∗ and M∗/N∗ strongly hopfian, then M∗ is strongly hopfian.
- Let M a graded leftA-module, N a submodule of M and M∗ the associate complex of M. Then :
- if all subcomplex of M∗ is cohopfian, then M∗ is cohopfian.
- if M∗/N∗ is strongly hopfian, then M∗ is strongly hopfian
References:-
References
E. C. Dade, Group graded rings and modules, Math. Z., 174 (1980), 241-262.
G. Renault, Algèbre non commutative, Gauthier-Villars, Paris-Bruxelles-Montréal (1975).
J. P. Lafon, Algèbre commutative, Hermann (1998).
J. Rotman, Notes on homological algebra, University of Illinois, Uraba (1968).
M. Artin, Commutative rings, cours note, M.I.T, (1966).
M. Barr and C. Wells, Categorie Theory for Computing Science, Prentice Hall (1990).
M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison Wesley Publishing Company, University of OXFORD.
M. F. Maaouia and M. Sanghare, Anneau de valuation non Nécessairement commutatif et duo-anneau de Dedekind, Global Journal of Pures and Applied Mathematics, ISSN 0973-1768, Volume 8, Number 1 (2012), pp. 49-63.
M. F. Maaouia, Thèse d’état, Faculté des Sciences et Techniques, UCAD, Dakar, Avril (2011).
M. Mendelson, Graded rings, modules and algebras, M.I.T, (1970).
OULD CHBIH Ahmed, Thèse, UFR-SAT, UGB, Saint-Louis, Avril (2016).
OULD CHBIH Ahmed, M. F. Maaouia and M. Sanghare, Graduation of Module of Fraction on a Graded Domain Ring not Necessarily Commutative, International Journal of Algebra, Vol. 9, 2015, no. 10, 457 - 474.
Diallo E. O. Maaouia M. F. and Sanghare M., Hopfian Objects, Cohopfian Objects in the category of complexes of left A-Modules,International Mathematical Forum, Vol
8, 2013, no 39, 1903-1920, http : //dx.doi.org/10.12988/imf. 2013.37128