Keywords:-
Article Content:-
Abstract
We show that the recurrence relation deduced by Robbins and Osler et al for the sum of divisors function can be solved in terms of the complete Bell polynomials. Besides, the connection between and the number of representations of n as the sum of four triangular numbers allows obtain arecurrence relation where only participate the values of with m odd.
References:-
References
R. Sivaraman, J. D. Bulnes, J. López-Bonilla, Complete Bell polynomials and recurrence relations for arithmetic functions, European of Theoretical and Applied Sci. 1, No. 3 (2023) 51-55.
R. Sivaramakrishnan, Classical theory of arithmetic functions, Marcel Dekker, New York (1989).
K. S. Kölbig, The complete Bell polynomials for certain arguments in terms of Stirling numbers of the first kind, J. Comput. Appl. Math. 51 (1994) 113-116.
W. P. Johnson, The curious history of Faä di Bruno’s formula, The Math. Assoc. of America 109(2002) 217-234.
D. F. Connon, Various applications of the (exponential) complete Bell polynomials,
http://arxiv.org/ftp/arkiv/papers/1001/1001.2835.pdf , 16 Jan 2010.
J. López-Bonilla, S. Vidal-Beltrán, A. Zúñiga-Segundo, Some applications of complete Bell polynomials, World Eng. & Appl. Sci. J. 9, No. 3 (2018) 89-92.
J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán, Bell polynomials, Prespacetime J. 9, No. 5 (2018) 451-453.
J. López-Bonilla, S. Vidal-Beltrán, A. Zúñiga-Segundo, Characteristic equation of a matrix via Bell polynomials, Asia Mathematika 2, No. 2 (2018) 49-51.
https://en.wikipedia.org/wiki/Bell_polynomials#Definitions
N. Robbins, Some identities connecting partition functions to other number theoretic functions, Rocky Mountain J. Math. 29, No. 1 (1999) 335-345.
T. J. Osler, A. Hassen, T. R. Chandrupatla, Surprising connections between partitions and divisors, The
College Maths. J. 38, No. 4 (2007) 278-287.12.- G. E. Andrews, S. Kumar Jha, J. López-Bonilla, Sums of squares, triangular numbers, and divisor sums, J. of Integer Sequences 26 (2023) Article 23.2.5
J. D. Bulnes, T. Kim, J. López-Bonilla, S. Vidal-Beltrán, On the partition function, Proc. of the Jangjeon Math. Soc. 26, No. 1 (2023) 1-9.
K. Ono, S. Robins, P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes Mathematicae 50, No. 1 (1995) 73-94.
- S. Cooper, On sums of an even number of squares, and an even number of triangular numbers: an elementary approach based on Ramanujan’s (_1^)ψ_1 summation formula, Contemp. Math. 291, Am. Math. Soc., Providence, RI, USA (2001).
J. López-Bonilla, S. Vidal-Beltrán, On the Jha and Malenfant formulae for the partition function, Comput. Appl. Math. Sci. 6, No. 1 (2021) 21-22.
- J. A. Ewell, On sums of triangular numbers and sums of squares, Amer. Math. Monthly 99, No. 8 (1992) 752-757.
A. Moreno-Cañadas, On sums of three squares, arXiv: 0812.0540v2 [math. NT] 4 Dec 2008.
E. Grosswald, Representations of integers as sums of squares, Springer-Verlag, New York (1985).
Goro Shimura, The representation of integers as sums of squares, Amer. J. Math. 124, No. 5 (2002) 1059-1081.
C.Moreno, S. Wagstaff, Sums of squares of integers, Chapman & Hall/CRC, Boca Raton, Fl (2006).
J. M. Gandhi, Congruences for p_r (n) and Ramanujan’s τ-function, Amer. Math. Monthly 70, No. 3 (1963) 265-274.
O. Lazarev, M. Mizuhara, B. Reid, Some results in partitions, plane partitions, and multipartitions, Summer 2010 REU Program in Maths. at Oregon State University, Aug. 13 (2010).
A. Lucas-Bravo, J. López-Bonilla, O. Marín-Martínez, On the colour partitions p_r (n),Comput. Appl. Math. Sci. 6, No. 2 (2021) 35-37.
J. López-Bonilla, M. Morales-García, Sum of divisors functions in terms of colour partitions, Studies in Nonlinear Sci. 7, No. 1 (2022) 4-5.