Keywords:-
Article Content:-
Abstract
In this paper we introduce notion of Ricci solitons in -para Kenmotsu manifold with semi -symmetric metric connection. We have found the relations between curvature tensor, Ricci tensors and scalar curvature of -para Kenmotsu manifold with semi-symmetic metric connection.We have proved that 3-dimensional -para Kenmotsu manifold with semi -symmetric metric connection is an -Einstein manifold and the Ricci soliton defined on this manifold is named expanding and steady with respect to the value of constant.It is proved that Conharmonically flat -para Kenmotsu manifold with semi-symmetric metric connection is -Einstein manifold.
References:-
References
Agashe , S and Chafle,R, 1992 , A semi-symmetric non-metric connection on a Riemannian manifold,Indian Journal Pure Applications ,23,6,399-409.
Bagewadi,C.S. and Ingalahalli,G., 2012,Ricci solitons in α-Sasakian manifolds,ISRN Geometry,13 p.
Bejan,C.L. and Crasmareanu, M., 2011, Ricci solitons in manifolds with quasi-constant curvature, publications Mathematicae, Debrecen, 78, 1, 235-243.
Blaga, A. M., η-Ricci solitons on para-Kenmotsu manifolds, arXiv:1402. 0223v1 [math.DG] 2 Feb (2014).
De, U.C. and Shaikh , A.A., 2007, Differential geometry of manifolds, Alpha Science International, 298 p.
G.Zhen, J.L. Cabrerizo, L.M. Fernandez and M. Fernandez,on ξ-conformally flat contact metric manifolds,Indian J.Pure Appl.Math.28(6),725-734(1997).
Kaneyuki,S. and Williams,FL., Almost paracontact and parahodge structures on manifolds,Nagoya Math. J., 99, (1985), 173-187.
Kenmotsu, K., 1972, A class of almost contact Riemannian manifolds, The Tohoku Mathematical Journal, 24, 93-103.
Liang, K.C.,1972, A nonoscillation theorem for the superlinear case of second order differential equation, SIAM Journal on Applied Mathematics, 23, 4, 456-459.
Mishra R.S., 1984 Structures on differentiable manifold and their applications, Chandrama Prakasana.
Nagaraja, H.G. and Premalatha, C.R., 2012, Ricci solitons in Kenmotsu manifolds, Journal of Mathematical Analysis, 3, 2, 18-24.
Prvanovic,M.,1975,On pseudo metric semi-symmetric connection,Publication De L Institut Mathematic Nouvelle Series,18,32,157-164.
Rossca,R.and Vanhecke,L.,S’ur une vari’et’e presque paracok "ahl’erienne munie d’une connexion self-orthogonal involutive, Ann.Sti.Univ. "Al.I.Cuza"Ia si.22,49-58(1976).
Sengupta,J.,De,U.C.and Binh,T.Q.,2000, On a type of semi-symmetric non-metric connection on a Riemannian manifold,Indian Journal of Pure Applied Mathematics,31,1659-1670.
Sharma,R. and Sinha,B.B.,1983,On para-A-Einstein manifolds ,Publications De L’institu Mathematique, 34,48,211-215.
Srivastava,K. and Srivastava, S.K., On a class of α-Para Kenmotsu manifolds, Mediterranean Journal of Mathematics, (2014).
Tripathi,M.M.,Ricci solitons in contact metric manifolds,http://arxiv.org/abs/0801.4222.
Welyczko,J., On Legendre curves in 3-dimensionalnormal almost paracontact metric manifolds, Result Math,54, (2009), 377-387.
Yildiz, A. and Cetinkaya, A., 2013, Kenmotsu manifolds with the semi-symmetric non-metric connection ,preprint.
Yano,K., On semi-symmetric metric connection, Rev.Roum.Math.Pure Appl.15,1570-1586(1970).
Zamkovoy,S., Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom, 36, (2009), 37-60.