Keywords:-

Keywords: Eigenvalue, Spectra, Degree sum distance matrix, Degree sum distance energy

Article Content:-

Abstract

In this paper motivated by the Schultz index for a connected graph, the degree sum distance matrix and degree sum distance energy are defined. We also obtain some bounds for the degree sum distance energy and deduce the degree sum distance energy of certain graphs.

References:-

References

B. Zhou and A. Ilic, On distance spectral radius and distance energy of graphs, Match Commun. Math. Comput. Chem. 64 (2010), 261-280.

G. Indulal, I. Gutman and V. Ambat, On distance energy of graph, Match Commun. Math. Comput. Chem. 60 (2008), 461-472.

H. S. Ramane, D. S. Revankar and J. B. Patil, Bounds for the degree sum eigenvalues and degree sum energy of a graph, International Journal of Pure and Applied Mathematical Sciences 6(2) (2013), 161-167.

S. M. Hosamani and H. S. Ramane, On degree sum energy of a graph, European J. of Pure and Appl. Math. 9(3) (2016), 340-345.

H. S. Ramane and K. C. Nandesh, Complementary distance spectra and complementary distance energy of line graph of regular graphs, J. Indones. Math. Soc. (2016), 27-35.

H. S. Ramane and S. S. Shinde, Degree exponent polynomial and degree exponent energy of graphs, Indian J. Discrete Math. 2(1) (2016), 1-7.

H. S. Ramane and S. S. Shinde, Degree exponent polynomial of graphs obtained by some graph opertaions, Electronics Notes in Discrete Math. 63 (2017), 161-168.

B. Basavanagoud and C. Eshwarachandra, Degree square sum polynomial of some special graphs, Int. J. Math. and Appl. 13(19) (2018), 14060-14078.

B. Basavanagoud and C. Eshwarachandra, Degree exponent sum energy of a graph, Gulf J. of Math. 8(1) (2020), 52-70$.

G. Pólya and G. Szego, Problems and Theorems in Analysis, Series, Integral Calculus, Theory of Functions, Springer, Berlin, 1972.

M. Biernacki, H. Pidek and C. Ryll and C. Ryll, Naedzewsk, Suruneinegalite entre des integrals definies, Maria Curie Skacodowska University, A4 (1950), 1-4.

N. Ozeki, On the estimation of inequalities by maximum and minimum values, Journal of college Arts and Science, Chiba University (1968), 199-203.

N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.

H. P. Schultz, Topological organic chemistry, 1. Graph Theory and Topological Indices of Alkanes, J. Chem. Inf. Comput. Sci. 29 (1989), 227-228.

H. P. Schultz, E. B. Schultz and T. P. Schultz, Topological organic chemistry, 2.Graph Theory, Matrix Determinants and Eigenvalues, and Topological Indices of Alkanes, J. Chem. Inf. Comput. Sci. 30 (1990), 27-29.

H. P. Schultz, E. B. Schultz and T. P. Schultz, Topological organic chemistry, 4. Graph Theory, Matrix Permanents, and Topological Indices of Alkanes, J. Chem. In. J. Compur. Sci. 32 (1992), 69-72.

H. P. Schultz and T. P. Schultz, Topological organic chemistry, 5. Graph Theory, Matrix Hafnians and Pfaffians, and Topological Indices of Alkanes, J. Chem. In. J. Compur. Sci. 32 (1992), 364-366.

H. P. Schultz, E. B. Schultz and T. P. Schultz, Topological organic chemistry, 7. Graph theory and molecular topological indices of unsaturated and aromatic hydrocarbons, J. Chem. Inf. Compur. Sci. 33 (1993), 863-867.

Downloads

Citation Tools

How to Cite
Jog, S. R., & Gurjar, J. (2023). Degree Sum Distance Spectra and Energy of Graphs. International Journal Of Mathematics And Computer Research, 11(11), 3852-3857. https://doi.org/10.47191/ijmcr/v11i11.03