Keywords:-

Keywords: Time scales, upper and lower solutions, maximal and minimal solutions, differential equation, integral boundary condition.

Article Content:-

Abstract

In this paper, we proved a new comparison result and the monotone iterative technique is developed to study the existence of solutions of dynamical equations with integral boundary conditions on time scales.

References:-

References

R. Agarwal, M. Bohner, A. Domoshnitsky, Y. Goltser, Folquet theory and stability of

nonlinear integro-differential equations, Acta Math. Hungar.109 (2005) 305-330.

M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Intro- duction with

Applications, Birkhauser, Boston, 2001.

M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser,

Boston, 2003.

C. Corduneanu, Integral Equations and Applications, Cambridge Univer- sity Press, 1991.

MR 92h:45001.

D. Franco, Green’s functions and comparison results for impulsive integro- differential

equations, Nonlinear Anal. 47(2001)5723-5728. [6] D. Guo, V.Lakshmikantham, X. Liu, Nonlinear Integral Equations in Ab- stract Spaces,

Kluwer, Dordrecht, 1996.

D. Guo, Initial value problems for integro-differential equations of Volterra type in Banach

spaces, J. Appl. Math. Stoch. Anal. 7 (1994) 13-23.

Guoping Chen and Jianhua Shen, Monotone Iterative Technique for a Class of Integro-

Differential Equations with Integral Boundary Conditions, Int. Journal of Math. Anal. 1

(2007) 113-122. IJMCR www.ijmcr.in| 3:1|January|2015|812-823 | 823

Z. He, X. He, Periodic boundary value problems for first order impul- sive integrodifferential

equations of mixed type, J. Math. Anal. Appl.

(2004)8-20.

Z. He, X. He, Monotone iterative technique for impulsive integro-differential equations with

periodic boundary conditions, Comput. Math. Appl.,48(2004)

S. Hilger, Analysis on measure chain, a unified approach to continuous and discrete calculus,

Results Math. 18(1990)18-56.

T. Jankowski, R. Jankowski, On integro-differential equations with de- layed arguments,

Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.13(2006)101-115.

D. Jiang, Junjie Wei, Monotone method for first and secon order periodic boundary value

problem and periodic solutions of functional differential equations, Nonlinear Anal., 50

(2002), 885-898. [14] G.S.Ladde, V. Lakshmikantham, A.S.Vatsala, Monotone Iterative Tech- niques for

Nonlinear Differential Equations, pitman, London, 1985

V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan, Dynamic Systems on Measure

Chains, Kluwer, 1996.

J.J. Nieto, R. Rodriguez Lopez, Periodic boundary value problems for non-Lipschitzian

impulsive functional differential equations, J. Math. Anal. Appl. 318 (2006) 593-610.

G. Song, Initial value problems for systems of integro-differential equations in Banach spaces,

J. Math. Anal. Appl. 264(2001) 68-75.

Y. Xing, M. Han, G. Zheng, Initial value problem for first order integro-differential

equation of Volterra type on time scales, Nonlinear Anal.60(3)(2005) 429-442.

H. Xu, J.J. Nieto, Extremal solutions of a class of nonlinear integro- differential

equations in Banach spaces, Proc. Amer. Math. Soc. 125(1997)2605-2614. [20] Yepeng Xing, Wei Ding, Maoan Han, Periodic boundary value problems of integrodifferential

equation of Volterra type on time scales, Nonlinear Anal. 68(2008) 127-138.

Downloads

Citation Tools

How to Cite
Ramana, G. V., Swamy, K., & Murty, A. (2015). Dynamical Equations with Integral Boundary Conditions On Time Scales. International Journal Of Mathematics And Computer Research, 3(01), 812-823. Retrieved from https://ijmcr.in/index.php/ijmcr/article/view/66