Keywords:-
Article Content:-
Abstract
In this paper, we proved a new comparison result and the monotone iterative technique is developed to study the existence of solutions of dynamical equations with integral boundary conditions on time scales.
References:-
References
R. Agarwal, M. Bohner, A. Domoshnitsky, Y. Goltser, Folquet theory and stability of
nonlinear integro-differential equations, Acta Math. Hungar.109 (2005) 305-330.
M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Intro- duction with
Applications, Birkhauser, Boston, 2001.
M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser,
Boston, 2003.
C. Corduneanu, Integral Equations and Applications, Cambridge Univer- sity Press, 1991.
MR 92h:45001.
D. Franco, Green’s functions and comparison results for impulsive integro- differential
equations, Nonlinear Anal. 47(2001)5723-5728. [6] D. Guo, V.Lakshmikantham, X. Liu, Nonlinear Integral Equations in Ab- stract Spaces,
Kluwer, Dordrecht, 1996.
D. Guo, Initial value problems for integro-differential equations of Volterra type in Banach
spaces, J. Appl. Math. Stoch. Anal. 7 (1994) 13-23.
Guoping Chen and Jianhua Shen, Monotone Iterative Technique for a Class of Integro-
Differential Equations with Integral Boundary Conditions, Int. Journal of Math. Anal. 1
(2007) 113-122. IJMCR www.ijmcr.in| 3:1|January|2015|812-823 | 823
Z. He, X. He, Periodic boundary value problems for first order impul- sive integrodifferential
equations of mixed type, J. Math. Anal. Appl.
(2004)8-20.
Z. He, X. He, Monotone iterative technique for impulsive integro-differential equations with
periodic boundary conditions, Comput. Math. Appl.,48(2004)
S. Hilger, Analysis on measure chain, a unified approach to continuous and discrete calculus,
Results Math. 18(1990)18-56.
T. Jankowski, R. Jankowski, On integro-differential equations with de- layed arguments,
Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.13(2006)101-115.
D. Jiang, Junjie Wei, Monotone method for first and secon order periodic boundary value
problem and periodic solutions of functional differential equations, Nonlinear Anal., 50
(2002), 885-898. [14] G.S.Ladde, V. Lakshmikantham, A.S.Vatsala, Monotone Iterative Tech- niques for
Nonlinear Differential Equations, pitman, London, 1985
V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan, Dynamic Systems on Measure
Chains, Kluwer, 1996.
J.J. Nieto, R. Rodriguez Lopez, Periodic boundary value problems for non-Lipschitzian
impulsive functional differential equations, J. Math. Anal. Appl. 318 (2006) 593-610.
G. Song, Initial value problems for systems of integro-differential equations in Banach spaces,
J. Math. Anal. Appl. 264(2001) 68-75.
Y. Xing, M. Han, G. Zheng, Initial value problem for first order integro-differential
equation of Volterra type on time scales, Nonlinear Anal.60(3)(2005) 429-442.
H. Xu, J.J. Nieto, Extremal solutions of a class of nonlinear integro- differential
equations in Banach spaces, Proc. Amer. Math. Soc. 125(1997)2605-2614. [20] Yepeng Xing, Wei Ding, Maoan Han, Periodic boundary value problems of integrodifferential
equation of Volterra type on time scales, Nonlinear Anal. 68(2008) 127-138.