Keywords:-

Keywords: Fixed point, Digital Metric Space, Digital Image, Digital Contraction.

Article Content:-

Abstract

This paper aims to define Dass and Gupta's contraction in the context of digital metric space and to establish a fixed point theorem for it. An example is also given in support of our proven result. Our findings widen and deepen a number of previously established findings in the literature.

References:-

References

A. Rani, K. Jyoti, and A. Rani, Common fixed point theorems in digital metric spaces, Int. j. sci. eng. Res, 7 (2016), 1704-1716.

B. Dass and S. Gupta, An extension of Banach’s contraction principle through rational expression, Indian J. Pure and Appl. Math., Vol. 6, (1975),1455–1458.

C. Park, O. Ege, S. Kumar, D. Jain, & J. R. Lee, Fixed point theorems for various contraction conditions in digital metric spaces. Journal of Computational Analysis and Applications, 26(8), (2019), 1451-1458.

L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging V 10 (1999), 51-62.

L. Boxer, digitally continuous functions, Pattern Recognition Letters, 15 (1994), 833-839.

O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. of Non. Sci. and Appli., 8 (2015), 237-245.

R. Rani, Common fixed point theorem in digital spaces using contraction mappings, int. j. stat. appl. Math, 3 (2018), 140-142.

Rosenfeld, Digital topology, Amer. Math. Monthly, 86 (1979), 76-87.

S. Dalal, Common fixed point results for weakly compatible map in digital metric spaces, Sch J. Phys. Math. Stat., 4 (2017), 196-201.

S. Kumar, D. Jain, O. Ege, D. Y. Shin and C. Park, Commuting and compatible mappings in digital metric spaces, J. Fixed Point Theory Appl., 22 (2020), 1-16.

Downloads

Citation Tools

How to Cite
Saluja, A. S., & Jhade, J. (2023). Dass and Gupta’s Fixed-Point Theorem in Digital Metric Space. International Journal Of Mathematics And Computer Research, 11(12), 3899-3901. https://doi.org/10.47191/ijmcr/v11i12.03