Keywords:-

Keywords: Linear groups, nilpotent subgroups, Hall classes, finite-by-

Article Content:-

Abstract

This research investigates the relationships between finite linear groups, nilpotent normal subgroups, and the concept of Hall classes. We explore the theorem established by Philip Hall, which asserts conditions under which a group is nilpotent. Contrary to existing examples presented in the literature, we delve into specific subclasses within the universe of linear groups to demonstrate improved properties regarding the formation of Hall classes. Our study aims to provide a deeper understanding of the interplay between finite-by-

References:-

References

Hall, M. Jr. (1959). The Theory of Groups. New York, NY: Macmillan.

Huppert, B. (1998). EndlicheGruppen I. Berlin, Germany: Springer-Verlag

Formanek, E. (1990). Linear Groups. New York, NY: Springer-Verlag

Wall, G. E. (2004). Matrix Groups. New York, NY: Springer-Verlag.

Isaacs, I. M. (2008). Finite Group Theory. Providence, RI: American Mathematical Society.

Kurzweil, H., &Stellmacher, B. (2004). The Theory of Finite Groups: An Introduction. Berlin, Germany: Springer-Verlag

Aschbacher, M. (2000). Finite Group Theory. Providence, RI: American Mathematical Society.

Seitz, G. M. (2004). Theory of Finite Simple Groups. Oxford, UK: Clarendon Press.

Guralnick, R., & Kantor, W. M. (2003). Probabilistic generation of finite simple groups. Journal of Algebra, 262(2), 275-311.

Dixon, J. D., & Mortimer, B. (1996). Counterexamples in Group Theory. New York, NY: Springer-Verlag.

Michael N J., Udoaka O. G.& Alex M., (2023). Nilpotent groups in cryptographic key exchange protocol for N≥ 1. Journal of Mathematical Problems, Equations and Statistics. ; 4(2): 32-34. DOI: 10.22271/math.v4.i2a.103

Michael N. J., &UdoakaO. G.,(2023). Computational Group Theory and Quantum-Era Cryptography, International Journal of Scientific Research in Science, Engineering and Technology, 10(6), 1-10.

Udoaka, O. G. (2022). Generators and inner automorphism. THE COLLOQUIUM -A Multi-disciplinary Thematc Policy Journal www.ccsonlinejournals.com. Volume 10, Number 1 , Pages 102 -111 CC-BY-NC-SA 4.0 International Print ISSN : 2971-6624 eISSN: 2971-6632.

Udoaka O. G. & David E. E. (2014). Rank of Maximal subgroup of a full transformation semigroup. International Journal of Current Research, Vol., 6. Issue, 09, pp,8351-8354.

Udoaka O. G. & Frank E. A.,(2022). Finite Semi-group Modulo and Its Application to Symmetric Cryptography. International Journal of Pure Mathematics DOI: 10.46300/91019.2022.9.13.

Udoaka O. G, Asibong-Ibe U. I. & David E. E. (2016). Rank ofproduct of certain algebraic classes. IOSR Journal of Mathematics, 12, e-ISSN: 2278-5728, 6, ver. 1,pg 123-125.

Michael N. John & Udoaka O. G (2023). Algorithm and Cube-Lattice-Based Cryptography. International journal of Research Publication and reviews, Vol 4, no 10, pp 3312-3315 October 2023. DOI: https://doi.org/10.55248/gengpi.4.1023.102842

Michael N. John, Udoaka, Otobong. G., Alex Musa,"Key Agreement Protocol Using Conjugacy Classes of Finitely Generated group”, International Journal of Scientific Research in Science and technology(IJSRST), Volume 10, Issue 6, pp52-56. DOI: https://doi.org/10.32628/IJSRST2310645

Michael N. John, Udoaka, Otobong. G., Boniface O. Nwala, "Elliptic-Curve Groups in Quantum-Era Cryptography”, ISAR Journal of science and technology, Volume 1, Issue 1, pp21-24. DOI: https://doi.org/10.5281/zenodo.10207536

Michael Nsikan John, Udoaka Otobong. G., & Alex Musa. (2023). SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA. GPH - International Journal of Mathematics, 06(10), 01–15. https://doi.org/10.5281/zenodo.10200179

John, Michael N., Ozioma, O., Obi, P. N., Egbogho, H. E., & Udoaka, O. G. (2023). Lattices in Quantum-ERA Cryptography. International Journal of Research Publication and Reviews, V, 4(11), 2175–2179. https://doi.org/10.5281/zenodo.10207210

Michael N. John, Ogoegbulem Ozioma, Udoaka Otobong. G., Boniface O. Nwala, & Obi Perpetua Ngozi. (2023). CRYPTOGRAPHIC ENCRYPTION BASED ON RAIL-FENCE PERMUTATION CIPHER. GPH - International Journal of Mathematics, 06(11), 01–06. https://di.org/10.5281/zenodo.10207316

Michael N. John, Ogoegbulem Ozioma, Obukohwo, Victor, & Henry Etaroghene Egbogho. (2023). NUMBER THEORY IN RSA ENCRYPTION SYSTEMS. GPH - International Journal of Mathematics, 06(11), 07–16. https://doi.org/10.5281/zenodo.10207361

John Michael. N., Bassey E. E., Udoaka O.G., Otobong J. T and Promise O.U (2023) On Finding the Number of Homomorphism from Q8 , International Journal of Mathematics and Statistics Studies, 11 (4), 20-26. doi: https://doi.org/10.37745/ijmss.13/vol11n42026

Michael N. John, Otobong G. Udoaka, & Itoro U. Udoakpan. (2023). Group Theory in Lattice-Based Cryptography. International Journal of Mathematics And Its Applications, 11(4), 111–125. Retrieved from https://ijmaa.in/index.php/ijmaa/article/view/1438

Michael N. John and Udoakpan I. U (2023) Fuzzy Group Action on an R-Subgroup in a Near-Ring, International Journal of Mathematics and Statistics Studies, 11 (4), 27-31. Retrieved from https://eajournals.org/ijmss/wp-content/uploads/sites/71/2023/12/Fuzzy-Group.pdf DOI;https://doi.org/10.37745/ijmss.13/vol11n42731

Michael N. John, Edet, Effiong, & Otobong G. Udoaka. (2023). On Finding B-Algebras Generated By Modulo Integer Groups

Downloads

Citation Tools

How to Cite
John, M. N., Bassey, E. E., Godswill, I. C., & G., U. (2023). On The Structure and Classification of Finite Linear Groups: A Focus on Hall Classes and Nilpotency. International Journal Of Mathematics And Computer Research, 11(12), 3919-3925. https://doi.org/10.47191/ijmcr/v11i12.07