Keywords:-
Article Content:-
Abstract
This research investigates the relationships between finite linear groups, nilpotent normal subgroups, and the concept of Hall classes. We explore the theorem established by Philip Hall, which asserts conditions under which a group is nilpotent. Contrary to existing examples presented in the literature, we delve into specific subclasses within the universe of linear groups to demonstrate improved properties regarding the formation of Hall classes. Our study aims to provide a deeper understanding of the interplay between finite-by-
References:-
References
Hall, M. Jr. (1959). The Theory of Groups. New York, NY: Macmillan.
Huppert, B. (1998). EndlicheGruppen I. Berlin, Germany: Springer-Verlag
Formanek, E. (1990). Linear Groups. New York, NY: Springer-Verlag
Wall, G. E. (2004). Matrix Groups. New York, NY: Springer-Verlag.
Isaacs, I. M. (2008). Finite Group Theory. Providence, RI: American Mathematical Society.
Kurzweil, H., &Stellmacher, B. (2004). The Theory of Finite Groups: An Introduction. Berlin, Germany: Springer-Verlag
Aschbacher, M. (2000). Finite Group Theory. Providence, RI: American Mathematical Society.
Seitz, G. M. (2004). Theory of Finite Simple Groups. Oxford, UK: Clarendon Press.
Guralnick, R., & Kantor, W. M. (2003). Probabilistic generation of finite simple groups. Journal of Algebra, 262(2), 275-311.
Dixon, J. D., & Mortimer, B. (1996). Counterexamples in Group Theory. New York, NY: Springer-Verlag.
Michael N J., Udoaka O. G.& Alex M., (2023). Nilpotent groups in cryptographic key exchange protocol for N≥ 1. Journal of Mathematical Problems, Equations and Statistics. ; 4(2): 32-34. DOI: 10.22271/math.v4.i2a.103
Michael N. J., &UdoakaO. G.,(2023). Computational Group Theory and Quantum-Era Cryptography, International Journal of Scientific Research in Science, Engineering and Technology, 10(6), 1-10.
Udoaka, O. G. (2022). Generators and inner automorphism. THE COLLOQUIUM -A Multi-disciplinary Thematc Policy Journal www.ccsonlinejournals.com. Volume 10, Number 1 , Pages 102 -111 CC-BY-NC-SA 4.0 International Print ISSN : 2971-6624 eISSN: 2971-6632.
Udoaka O. G. & David E. E. (2014). Rank of Maximal subgroup of a full transformation semigroup. International Journal of Current Research, Vol., 6. Issue, 09, pp,8351-8354.
Udoaka O. G. & Frank E. A.,(2022). Finite Semi-group Modulo and Its Application to Symmetric Cryptography. International Journal of Pure Mathematics DOI: 10.46300/91019.2022.9.13.
Udoaka O. G, Asibong-Ibe U. I. & David E. E. (2016). Rank ofproduct of certain algebraic classes. IOSR Journal of Mathematics, 12, e-ISSN: 2278-5728, 6, ver. 1,pg 123-125.
Michael N. John & Udoaka O. G (2023). Algorithm and Cube-Lattice-Based Cryptography. International journal of Research Publication and reviews, Vol 4, no 10, pp 3312-3315 October 2023. DOI: https://doi.org/10.55248/gengpi.4.1023.102842
Michael N. John, Udoaka, Otobong. G., Alex Musa,"Key Agreement Protocol Using Conjugacy Classes of Finitely Generated group”, International Journal of Scientific Research in Science and technology(IJSRST), Volume 10, Issue 6, pp52-56. DOI: https://doi.org/10.32628/IJSRST2310645
Michael N. John, Udoaka, Otobong. G., Boniface O. Nwala, "Elliptic-Curve Groups in Quantum-Era Cryptography”, ISAR Journal of science and technology, Volume 1, Issue 1, pp21-24. DOI: https://doi.org/10.5281/zenodo.10207536
Michael Nsikan John, Udoaka Otobong. G., & Alex Musa. (2023). SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA. GPH - International Journal of Mathematics, 06(10), 01–15. https://doi.org/10.5281/zenodo.10200179
John, Michael N., Ozioma, O., Obi, P. N., Egbogho, H. E., & Udoaka, O. G. (2023). Lattices in Quantum-ERA Cryptography. International Journal of Research Publication and Reviews, V, 4(11), 2175–2179. https://doi.org/10.5281/zenodo.10207210
Michael N. John, Ogoegbulem Ozioma, Udoaka Otobong. G., Boniface O. Nwala, & Obi Perpetua Ngozi. (2023). CRYPTOGRAPHIC ENCRYPTION BASED ON RAIL-FENCE PERMUTATION CIPHER. GPH - International Journal of Mathematics, 06(11), 01–06. https://di.org/10.5281/zenodo.10207316
Michael N. John, Ogoegbulem Ozioma, Obukohwo, Victor, & Henry Etaroghene Egbogho. (2023). NUMBER THEORY IN RSA ENCRYPTION SYSTEMS. GPH - International Journal of Mathematics, 06(11), 07–16. https://doi.org/10.5281/zenodo.10207361
John Michael. N., Bassey E. E., Udoaka O.G., Otobong J. T and Promise O.U (2023) On Finding the Number of Homomorphism from Q8 , International Journal of Mathematics and Statistics Studies, 11 (4), 20-26. doi: https://doi.org/10.37745/ijmss.13/vol11n42026
Michael N. John, Otobong G. Udoaka, & Itoro U. Udoakpan. (2023). Group Theory in Lattice-Based Cryptography. International Journal of Mathematics And Its Applications, 11(4), 111–125. Retrieved from https://ijmaa.in/index.php/ijmaa/article/view/1438
Michael N. John and Udoakpan I. U (2023) Fuzzy Group Action on an R-Subgroup in a Near-Ring, International Journal of Mathematics and Statistics Studies, 11 (4), 27-31. Retrieved from https://eajournals.org/ijmss/wp-content/uploads/sites/71/2023/12/Fuzzy-Group.pdf DOI;https://doi.org/10.37745/ijmss.13/vol11n42731
Michael N. John, Edet, Effiong, & Otobong G. Udoaka. (2023). On Finding B-Algebras Generated By Modulo Integer Groups
Downloads
Citation Tools
Most read articles by the same author(s)
- Michael N. John, Udoakpan Itoro U., On Strongly Base-Two Finite Groups with Trivial Frattini Subgroup: Conjugacy Classes and Core-Free Subgroup , International Journal Of Mathematics And Computer Research: Vol 11 No 12 (2023): VOLUME 11 ISSUE 12