Keywords:-
Article Content:-
Abstract
By making use of the q-analogue of famous S˘al˘agean differential operator, the authors define a new subclass of analytic functions with respect to other points. Fekete-Szeg¨o inequality and initial coefficient bounds of a certain bi-starlike functions are obtained. Further several examples, remarks and applications of our results are enumerated.
References:-
References
S¸. Altınkaya and S. Yalc¸ın, Initial coefficient bounds for a comprehensive subclass of Sakaguchi type functions, Acta Univ. M. Belii, ser. Math. 23 (2015), 27–33.
L. Bieberbach, Uber¨ die koeffinzienten derjenigen potenzreihen, welche cine schlichte Abbildung des Einheitskreises wermitteln. S.-B. Preuss. Akad. Wiss. (1916), 940–955.
J. H. Choi, Y. C. Kim and T. Sugawa, A general approach to the Fekete-Szeg¨o problem, J. Math. Soc. Japan 59 (2007), no. 3, 707–727.
A. Chonweerayoot, D. K. Thomas and W. Upakarnitikaset, On the Fekete-Szeg˝o theorem for closeto-convex functions, Publ. Inst. Math. (Beograd) (N.S.) 52(66) (1992), 18–26.
M. Darus and D. K. Thomas, The Fekete-Szeg˝o theorem for strongly close-to-convex functions, Sci. Math. 3 (2000), no. 2, 201–212.
K. Kuroki and S. Owa, Notes on new class for certain analytic functions, RIMS Kokyuroku, 1772 (2011) pp. 21—25.
W. Koepf, On the Fekete-Szeg˝o problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), no. 1, 89–95.
W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on complex Analysis, Z. Li, F Ren, L Lang , and S. Zhang (Eds), International press Boaton, Mass, USA, (1994), 157-169.
W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
W. Ma and D. Minda, Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl. 205 (1997), no. 2, 537–553.
M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985) , no. 1, 1–12.
W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943) , 48–82.
K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72–75.
G. S¸. S˘al˘agean, Subclasses of univalent functions, in Complex analysis—fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362–372, Lecture Notes in Math., 1013, Springer, Berlin.
V. Ravichandran et al., Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat. 34 (2005), 9–15.
A. C. Schaeffer and D. C. Spencer, Coefficient Regions for Schlicht Functions, American Mathematical Society Colloquium Publications, Vol. 35, Amer. Math. Soc., New York, NY, 1950.
T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal. 10 (2016), no. 1, 135–145.
P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw. L ´odz. Nauki Mat. Przyrod. Ser. II No. 39 Mat. (1971), 75–85.