Keywords:-
Article Content:-
Abstract
In this paper, we present a version of the signature on subcodes of generalized Reed-Solomon codes defined on a subfield. We show that the use of alternating codes reduces the key size and the use of subcodes has the caracteristic of hiding the code structure. This makes the system more secure.
References:-
References
Aguilar, C., Gaborit, P., Schrek, J.: A new zero-knowledge code based identification scheme with reduced communication. In: 2011 IEEE Information Theory Workshop. pp. 648–652. IEEE (2011))
Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank metric based signature scheme. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. pp. 728–758. Springer (2019
Aragon, N.: Cryptographie à base de codes correcteurs d’erreurs en métrique rang et application. Ph.D. thesis, Université de Limoges (2020)
Bellini, E., Caullery, F., Hasikos, A., Manzano, M., Mateu, V.: Code-based signature schemes from identification protocols in the rank metric. In: International Conference on Cryptology and Network Security. pp. 277–298. Springer (2018).
Bellini, E., Gaborit, P., Hasikos, A., Mateu, V.: Enhancing code based zero-knowledge proofs using rank metric. In: Cryptology and Network Security: 19th International Conference, CANS 2020, Vienna, Austria, December 14–16, 2020, Proceedings 19. pp. 570–592. Springer (2020)
Berger, T.P., Gueye, C.T., Klamti, J.B.: Generalized subspace subcodes with application in cryptology. IEEE Transactions on Information Theory 65(8), 4641–4657 (2019)
Cayrel, P.L., Alaoui, S.: Dual construction of stern-based signature scheme 63,98–103 (03 2010).
Cayrel, P.L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification scheme based on the q-ary syndrome decoding problem. In: International Workshop on Selected Areas in Cryptography. pp. 171–186. Springer (2010)
Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a mceliece-based digital signature scheme. In: International Conference on the Theory and Application of Cryptology and Information Security. pp. 157–174. Springer (2001)
Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Conference on the theory and application of cryptographic techniques. pp. 186–194. Springer (1986)
Hill, R.: A first course in coding theory. Oxford University Press (1986)
Huffman, W.C., Pless, V.: Fundamentals of error-correcting codes. Cambridge university press (2010)
Loidreau, P.: Etude et optimisation de cryptosystèmes à clé publique fondés sur la théorie des codes correcteurs. Ph.D. thesis (5 2001)
McWilliams, F., Sloane, N.: The theory of error correcting codes, north mathematical library, vol. 16 (1983)
Misoczki, R., Barreto, P.S.: Compact mceliece keys from goppa codes. In: International Workshop on Selected Areas in Cryptography. pp. 376–392. Springer (2009)
Moufek, H.: Les codes correcteurs pour la cryptographie. Ph.D. thesis, Faculté de Mathématiques (2017)
Richmond, T. : Implantation sécurisée de protocoles cryptographiques basés sur les codes correcteurs d’erreurs. (secure implementation of cryptographic protocols based on error-correcting codes) (2016)
Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on generalized reed-solomon codes (1992)
Trappe, W.: Introduction to cryptography with coding theory. Pearson Education India (2006)
Wieschebrink, C.: Cryptanalysis of the niederreiter public key scheme based on grs subcodes. In: Post-Quantum Cryptography: Third International Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings 3. pp. 61–72. Springer (2010)