Keywords:-

Keywords: Perfect numbers, prime numbers, composite numbers, number theory, even, odd

Article Content:-

Abstract

For all 51 known perfect numbers ranging from (p=2 to p= 82589933) and with the only exception of N=6, all perfect numbers belong to the group of natural numbers formed by N=4+6n. If this observation can be proven valid for all existing even perfect numbers, that would automatically exclude 2/3 of all even numbers out of the possibility of being perfect. If this can be proven a necessary condition for all perfect numbers, then it would rule out the possibility of having any odd perfect numbers.

References:-

References

Eastham, David Thomas, "On Perfect Numbers" (1965). Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539624586.

Ore, Øystein (1948). "On the averages of the divisors of a number". American Mathematical Monthly. 55 (10): 615–619.

Ochem, Pascal; Rao, Michaël (2012). "Odd perfect numbers are greater than 101500". Mathematics of Computation. 81 (279): 1869–1877.

Kühnel, Ullrich (1950). "Verschärfung der notwendigen Bedingungen für die Existenz von ungeraden vollkommenen Zahlen". Mathematische Zeitschrift (in German). 52: 202–211.

Roberts, T (2008). "On the Form of an Odd Perfect Number". Australian Mathematical Gazette. 35 (4): 244.

Goto, T; Ohno, Y (2008). "Odd perfect numbers have a prime factor exceeding 108". Mathematics of Computation. 77 (263): 1859–1868.

Segura, J. J.; Barchino, R. (2023). “The 5 equations that generate all composite numbers” International Journal of Mathematics and Computer Research. 11 (03): 3295-3304.

Downloads

Citation Tools

How to Cite
J. J., S., & S., O. (2024). All Known Perfect Numbers other than 6 Satisfy N=4+6n. International Journal Of Mathematics And Computer Research, 12(3), 4103-4106. https://doi.org/10.47191/ijmcr/v12i3.04