Keywords:-

Keywords: Fuzzy Linear Systems, Dual Fuzzy Linear Systems, Complex Numbers

Article Content:-

Abstract

The main objective of this research is to solve the system of equations of dual complex fuzzy matrices AX+Y=BX+Z  where A, B are crisp coefficient matrices of size n*n and Y, Z are complex fuzzy number matrices. By transforming it into the form of a system of equations of complex fuzzy matrices SX+Y=RX+Z  where S>=0 denotes the positive entries of matrix AS<=0  denotes the absolute values of the negative entries of matrix A, R>=0 denotes the positive entries of matrix B, R<=0 denotes the absolute values of the negative entries of matrix B, and Y, Z are matrices of complex fuzzy numbers. Based on the research, it is obtained that the solution of the system of equations of dual complex fuzzy matrices can be achieved by transforming the system of equations of n*n matrices into 2n*2n matrices, where n>=2.

References:-

References

Y. Zheng et al., “Solving Systems of Linear Equations with a Superconducting Quantum Processor,” Phys. Rev. Lett., vol. 210504, no. May, pp. 1–6, 2017.

E. A, Youness and I. M, Mekawy, “A Study on Fuzzy Complex Linear Programming Problems,” Int. J. Contemp. Math. Sci., vol. 7, no. 19, pp. 897–908, 2012.

A. C. Illeigo and H. N. Ojogbane, “Application of Matrices and Linear Programming in Economics,” Am. J. IT Appl. Sci. Res., vol. 1, no. 1, pp. 1–15, 2022.

G. Bojadziev and M. Bojadziev, Advances in Fuzzy Systems Aplicationd and Theory, 2nd Editio. World Scientific, 2007.

A. Sarkar, G. Sahoo, and U. C, Sahoo, “Application of Fuzzy Logic in Transport Planning,” Int. J. Soft Comput, vol. 3, no. 2, pp. 1–21, 2012.

D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduction to Fuzzy Control, 2nd Editio. Springer, 1996.

I. Irmawati, I. Sukarsih, and R. Respitawulan, “Solusi Sistem Persamaan Linear Fuzzy,” Matematika, vol. 16, no. 2, pp. 1–8, 2017.

T. Allahviranloo, M. Ghanbari, A. A. Hosseinzadeh, E. Haghi, and R. Nuraei, “A note on ‘fuzzy linear systems,’” Fuzzy Sets Syst., vol. 177, no. 1, pp. 87–92, 2011.

M. Friedman, M. Ming, and A. Kandel, “Fuzzy linear systems,” Fuzzy Sets Syst., vol. 96, no. 2, pp. 201–209, 1998.

F. Babakordi and T. Allahviranloo, “A Cramer Method for Solving Fully Fuzzy Linear Systems Based on Transmission Average,” Control Optim. Appl. Math., vol. 7, no. 2, pp. 115–130, 2022.

T. Allahviranloo, R. Nuraei, M. Ghanbari, E. Haghi, and A. A. Hosseinzadeh, “A new metric for L-R fuzzy numbers and its application in fuzzy linear systems,” Soft Comput., vol. 16, no. 10, pp. 1743–1754, 2012.

M. Ghanbari, T. Allahviranloo, and W. Pedrycz, “On the rectangular fuzzy complex linear systems,” Appl. Soft Comput. J., vol. 91, p. 106196, 2020.

M. Ghanbari and R. Nuraei, “Convergence of a semi-analytical method on the fuzzy linear systems,” Iran. J. Fuzzy Syst., vol. 11, no. 4, pp. 45–60, 2014.

R. Nuraei, T. Allahviranloo, and M. Ghanbari, “Finding an inner estimation of the solution set of a fuzzy linear system,” Appl. Math. Model., vol. 37, no. 7, pp. 5148–5161, 2013.

W. Cong-Xin and M. Ming, “Embedding problem of fuzzy number space: Part I,” Fuzzy Sets Syst., vol. 44, no. 1, pp. 33–38, 1991.

M. Ma, M. Friedman, and A. Kandel, “Duality in fuzzy linear systems,” Fuzzy Sets Syst., vol. 109, no. 1, pp. 55–58, 2000.

M. Chehlabi, “Solving fuzzy dual complex linear systems,” J. Appl. Math. Comput., vol. 60, no. 1–2, pp. 87–112, 2019.

M. Ghanbari, T. Allahviranloo, and W. Pedrycz, “A straightforward approach for solving dual fuzzy linear systems,” Fuzzy Sets Syst., vol. 435, pp. 89–106, 2022.

Z. Gong, J. Wu, and K. Liu, “The dual fuzzy matrix equations: Extended solution, algebraic solution and solution,” AIMS Math., vol. 8, no. 3, pp. 7310–7328, 2023.

M. . Jahantigh, S. Khezerloo, and M. Khezerloo, “Complex Fuzzy Linear Systems,” Int. J. Ind. Math., vol. 2, no. 1, pp. 21–28, 2010.

C. C. Marzuki and N. Hasmita, “Penyelesaian Sistem Persamaan Linear Fuzzy Kompleks Menggunakan Metode Dekomposisi Doolittle,” J. Sains, Teknol. dan Ind., vol. 11, no. 2, pp. 167–174, 2014.

B. Bede and S. G. Gal, “Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations,” Fuzzy Sets Syst., vol. 151, no. 3, pp. 581–599, 2005.

K. Chakrabarty, R. Biswas, and S. Nanda, “On fuzzy metric spaces,” Fuzzy Sets Syst., vol. 99, no. 1, pp. 111–114, 1998.

S. V. Rivika, “Penyelesaian Sistem Persamaan Linear Fuzzy Kompleks,” Universitas Riau, 2020.

D. Behera and S. Chakraverty, “A new method for solving real and complex fuzzy systems of linear equations,” Comput. Math. Model., vol. 23, no. 4, pp. 507–518, 2012.

K. Zhang and X. Guo, “Solving Complex Fuzzy Linear System of Equations by using QR-Decomposition Method,” vol. 2, no. 9, pp. 54–63, 2016.

D. Behera and S. Chakraverty, “Solving fuzzy complex system of linear equations,” Inf. Sci. (Ny)., vol. 277, pp. 154–162, 2014.

M. Ghanbari, “A discussion on ‘solving fuzzy complex system of linear equations,’” Inf. Sci. (Ny)., vol. 402, pp. 165–169, 2017.

S. Abbasbandy, E. Babolian, and M. Alavi, “Numerical method for solving linear Fredholm fuzzy integral equations of the second kind,” Chaos, Solitons and Fractals, vol. 31, no. 1, pp. 138–146, 2007.

Downloads

Citation Tools

How to Cite
Wahyuni, S., Muda, Y., Aryani, F., & ., R. (2024). The Algebraic Solution of Dual Fuzzy Complex Linear Systems Formed 2n×2n. International Journal Of Mathematics And Computer Research, 12(5), 4247-4255. https://doi.org/10.47191/ijmcr/v12i5.09