Keywords:-
Article Content:-
Abstract
The main aims of this research is to solve the dual fuzzy complex linear system AX +C =BX +D, where A,B are crisp coefficient matrices and C ,D are fuzzy number matrices. The research findings indicate that the system of two fuzzy complex linear equations can be solved under the conditional that (A-B)^(-1) and (|B|-|A|)^(-1) exists.
References:-
References
Irmawati, I. Sukarsih, and R. Respitawulan, “Solusi Sistem Persamaan Linear Fuzzy,” Matematika, vol. 16, no. 2, pp. 1–8, 2017.
A. Sarkar, G.Sahoo, and U.C.Sahoo, “Application of Fuzzy Logic in Transport Planning,” Int. J. Soft Comput., vol. 3, no. 2, pp. 1–21, 2012.
E. A. Youness and I. m. Mekawy, “A Study on Fuzzy Complex Linear Programming Problems,” vol. 7, no. 19, pp. 897–908, 2012.
B. Bede and S. G. Gal, “Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations,” Fuzzy Sets Syst., vol. 151, no. 3, pp. 581–599, 2005.
D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduction to Fuzzy Control. Berlin: Springer, 1996.
Z. Gong, J. Wu, and K. Liu, “The dual fuzzy matrix equations: Extended solution, algebraic solution and solution,” AIMS Math., vol. 8, no. 3, pp. 7310–7328, 2023.
M. Friedman, M. Ming, and A. Kandel, “Fuzzy linear systems,” Fuzzy Sets Syst., vol. 96, no. 2, pp. 201–209, 1998.
C. C. Marzuki and N. Hasmita, “Penyelesaian Sistem Persamaan Linear Fuzzy Kompleks Menggunakan Metode Dekomposisi Doolittle,” J. Sains, Teknol. dan Ind., vol. 11, no. 2, pp. 166–174, 2014.
F. Babakordi and T. Allahviranloo, “A Cramer Method for Solving Fully Fuzzy Linear Systems Based on Transmission Average,” Control Optim. Appl. Math., vol. 7, no. 2, pp. 115–130, 2022.
L. Zakaria, W. Megarani, A. Faisol, A. Nuryaman, and U. Muharramah, “Computational Mathematics: Solving Dual Fully Fuzzy Nonlinear Matrix Equations Numerically using Broyden’s Method,” Int. J. Math. Eng. Manag. Sci., vol. 8, no. 1, pp. 60–77, 2023.
D. S. Dinagar and A. H. S. PRIYAM, “Solving Linear System of Equations With Fuzzy Revised Decomposition Method,” Adv. Appl. Math. Sci., vol. 20, no. 5, pp. 931–944, 2021.
Y. Sun, J. An, and X. Guo, “Solving Fuzzy complex Linear Matrix Equations,” Math. Probl. Eng., vol. 2021, 2021.
T. Allahviranloo and M. Ghanbari, “On the algebraic solution of fuzzy linear systems based on interval theory,” Appl. Math. Model., vol. 36, no. 11, pp. 5360–5379, 2012.
T. Allahviranloo, E. Haghi, and M. Ghanbari, “The nearest symmetric fuzzy solution for a symmetric fuzzy linear system,” Analele Stiint. ale Univ. Ovidius Constanta, Ser. Mat., vol. 20, no. 1, pp. 151–172, 2012.
T. Allahviranloo, R. Nuraei, M. Ghanbari, E. Haghi, and A. A. Hosseinzadeh, “A new metric for L-R fuzzy numbers and its application in fuzzy linear systems,” Soft Comput., vol. 16, no. 10, pp. 1743–1754, 2012.
M. Ghanbari, T. Allahviranloo, and W. Pedrycz, “On the rectangular fuzzy complex linear systems,” Appl. Soft Comput. J., vol. 91, p. 106196, 2020.
M. Ghanbari and R. Nuraei, “Convergence of a semi-analytical method on the fuzzy linear systems,” Iran. J. Fuzzy Syst., vol. 11, no. 4, pp. 45–60, 2014.
R. Nuraei, T. Allahviranloo, and M. Ghanbari, “Finding an inner estimation of the solution set of a fuzzy linear system,” Appl. Math. Model., vol. 37, no. 7, pp. 5148–5161, 2013.
S. V. Rivika, “PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS Syil Viya Rivika,” 2020.
M. Ma, M. Friedman, and A. Kandel, “Duality in fuzzy linear systems,” Fuzzy Sets Syst., vol. 109, no. 1, pp. 55–58, 2000.
M. Ghanbari, T. Allahviranloo, and W. Pedrycz, “A straightforward approach for solving dual fuzzy linear systems,” Fuzzy Sets Syst., vol. 435, pp. 89–106, 2022.
O. Kaleva and S. Seikkala, “On fuzzy metric spaces,” Fuzzy Sets Syst., vol. 12, no. 1, pp. 215–229, 1984.
D. Behera and S. Chakraverty, “A new method for solving real and fuzzy complex systems of linear equations,” Comput. Math. Model., vol. 23, no. 4, pp. 507–518, 2012.
K. Zhang and X. Guo, “Solving Fuzzy complex Linear System of Equations by using QR-Decomposition Method,” no. 9, pp. 54–63, 2016.
M. Ghanbari, “A discussion on ‘solving fuzzy complex system of linear equations,’” Inf. Sci. (Ny)., vol. 402, pp. 165–169, 2017.