Keywords:-

Keywords: Voxel, phantom, MR image, brain, skull, skin, fat ,memory, central nervous

Article Content:-

Abstract

In this paper, we present our process for developing digital cranial phantom for newborns that may be used to simulate MR images of the brain. Adult brain is foundation for several popular digital brain phantoms like BrainWeb. As more people become interested in using computer-aided methods for analyzing neonatal MR images, a demand for digital spectre & brain MR image simulator develops. This 3D digital brain phantom is comprised of 10 volumetric data sets which characterize spatial distribution of various tissues, having voxel intensity inversely correlated to amount of tissue contained inside the voxel. It is possible to simulate head tomography with help of digital brain phantom. This article discusses development of 3D digital infant neurocranial phantom & its application to the modeling of brain MR images.These pictures, with carefully orchestrated data deterioration, provide a typical, repeatable data set suitable for testing and training analytical techniques for neonatal MRI, such as segment & recognition algorithms.

References:-

References

P. Hemler, P. van den Elsen, T. Sumanaweera, S. Napel, J. Drace, and J. Adler, “A quantitative comparison of residual error for three different multimodality registration techniques,” in Information Processing in Medical Imaging, Y. Bizais and C. Barillot, Eds. Ile Berder, France: IPMI, Kluwer, 1995, pp. 251–262.

J. C. Rajapakse, C. DeCarli, A. McLaughlin, J. N. Giedd, A. L. Krain, S. D. Hamburger, and J. L. Rapoport, “Cerebral magnetic resonance image segmentation using data fusion,” J. Comput. Assist. Tomogr., vol. 20, pp. 206–18, Mar./Apr. 1996.

E. Hoffman, P. Cutler, W. Digby, and J. Mazziotta, “3-D phantom to simulate cerebral blood flflow and metabolic images for PET,” IEEE Trans. Nucl. Sci., vol. 37, pp. 616–620, 1990.

E. Hoffman, P. Cutler, T. Guerrero, W. Digby, and J. Mazziotta, “Assessment of accuracy of PET utilizing a 3-D phantom to simulate the activity distribution of FDG uptake in the human brain,” J. Cereb. Blood Flow Metab., vol. 11, pp. A17–A25, 1991.

H. J. Kim, J. S. Karp, P. D. Mozley, S. O. Yang, D. H. Moon, H. F. Kung, H. K. Lee, and A. Alavi, “Stimulating technetium-99 m cerebral perfusion studies with a threedimensional Hoffmann brain phantom:4http://www.bic.mni.mcgill.ca/brainweb.

Collimator and fifilter selection in SPECT neuroimaging,” Ann. Nucl. Med., vol. 10, pp. 153–160, Feb. 1996.

S. Eberl, I. Kanno, R. R. Fulton, A. Ryan, B. F. Hutton, and M. J. Fulham, “Automated interstudy image registration technique for SPECT

and pet,” J. Nucl. Med., vol. 37, pp. 137–45, Jan. 1996.

J. Li, R. J. Jaszczak, and R. E. Coleman, “A fifiltered backprojection algorithm for axial head motion correction in fan-beam SPECT,” Phy. Med., Biol., vol. 40, pp. 2053–2063, Dec. 1995.

D. Mahoney, S. Huang, A. Ricci, J. Mazziotta, R. Carson, E. Hoffman, and M. Phelps, “A realistic computer-simulated brain phantom for evaluation of PET characteristics,” IEEE Trans. Med. Imag., vol. MI-6, pp. 250–257, 1987.

H.-J. Kim, B. Zeeberg, F. Fahey, A. Bice, E. Hoffman, and R. Reba, “3-D SPECT simulations of a complex 3-D mathematical brain model and measurements of the 3-D physical brain phantom,” J. Nucl. Med., vol. 32, pp. 1923–1930, 1991.

Y. Narita, H. Iida, B. A. Ardekani, J. Hatazawa, I. Kanno, T. Nakamura, and K. Uemura, “Evaluation of partial volume effect in quantitative measurement of regional cerebral blood flflow using positron emission tomography,” (in Japanese) Kaku Igaku—Jpn. J. Nucl. Med., vol. 32, pp. 163–72, Feb. 1995.

H. Iida, Y. Narita, B. A. Ardekani, J. Hatazawa, M. Nakazawa, I. Kanno, and K. Uemura, “Evaluation of partial volume effect in quantitative measurement of regional cerebral blood flflow in single photon emission computed tomography-effects of limited spatial resolution and fifirst

pass extraction fraction,” Kaku Igaku—Jpn. J. Nucl. Med., vol.32, pp. 155–62, Feb. 1995.

D. Collins, C. Holmes, T. Peters, and A. Evans, “Automatic 3-D modelbased neuroanatomical segmentation,” Human Brain Mapping, vol. 3, no. 3, pp. 190–208, 1995.

Y. Ma, M. Kamber, and A. C. Evans, “3-D simulation of PET brain images using segmented MRI data and positron tomograph characteristics,” Computerized Med. Imag., Graphics, vol. 17, pp. 365–371, July/Oct. 1993.

R. Kwan, A. C. Evans, and G. B. Pike, “An extensible MRI simulator for post-processing evaluation,” in Proc. 4th Int. Conf. Visualization in Biomedical Computing, VBC ‘96, Hamburg, Sept. 1996, pp. 135–140.

C. Holmes, R. Hoge, D. Collins, R. Woods, A. Toga, and A. Evans, “Enhancement of MR images using registration for signal averaging,” J. Comput. Assist. Tomogr., vol. 22, pp. 324–333, Mar. 1998.

Bruno Alfano, Gioacchino Tedeschi , Arturo Brunetti, MarSalvatore ,2011, “An MRI digital brain phantom for validation of segmentation methods“

Design and construction of a realistic digital brain phantom D. L. Collins1, Alex P. Zijdenbos2, V. Kollokian2 +4 more•Institutions (2) 01 Jun 1998-IEEE Transactions on Medical Imaging (IEEE)-Vol. 17, Iss: 3, pp 463-468

BigBrain-MR: a new digital phantom with anatomically-realistic magnetic resonance properties at 100-µm resolution for magnetic resonance methods development Cristina Sainz Martinez,1,2 Meritxell Bach Cuadra,2,3 João Jorge 1,2022,

Downloads

Citation Tools

How to Cite
D C, S., Gadgay, B., & Begum, M. (2024). The Evolution of a Vivid Virtual the Cortex Avatar of Infant. International Journal Of Mathematics And Computer Research, 12(6), 4271-4275. https://doi.org/10.47191/ijmcr/v12i6.02