Keywords:-
Article Content:-
Abstract
Accurate wind speed modeling is critical in estimating wind energy potential for harnessing wind power effectively. One of the bases for assessment of wind energy potential for a specified region is the probability distribution of wind speed, therefore wind speed data is needed to produce statistical modeling, especially in determining the best probability distribution. For this purpose, several modified distributions will be used and tested to determine the best model to describe wind speed in Pekanbaru. Six continuous probability density function such as Two Parameters Gamma (GM), Three Parameters Slashed Quasi-Gamma (SQG), Three Parameters Quasi Gamma (QG), Three Parameters Generalized Gamma (GG), Four Parameters Poly Weighted Exponentiated Gamma (PWEG) and Four Parameters Exponentiated Gamma Exponential (EGE) distributions were fitted for these tasks using the maximum likelihood technique. To determine the model’s fit to the daily wind speed data, several goodness-of-fit tests were applied, including the graphical methos test (pdf plot) and numerical criteria method test (AIC). The QG and GG distributions are found to be the best-fitted probability distribution based on goodness-of-fit tests for the daily wind speed data at the Pekanbaru station.
References:-
References
S. Mujiyanto and G. Tiess, 2013. “Secure energy supply in 2025: Indonesia's need for an energy policy strategy,” Energy Policy, vol. 61, pp. 31- 41.
Akyuz, H. E. & Gamgam, H. 2017. Statistical Analysis of Wind Speed Data with Weibull, Lognormal and Gamma Distributions. Cumhuriyet Science Journal, Volume: 38 Supplement Issue 4, 68-76. DOI: 10.17776/csj.358773
Mohammadi K., Alavi O., Mostafaeipour A., Goudarzi N., & Jalilvand M. 2016. Assessing different parameters estimation methods of Weibull distribution to compute wind power density Energ Convers Manag 2016; 108:322-35.
Arslan T., Bulut Y.M, Yavuz A.A. 2014. Comparative study of numerical methods for determining weibull parameters for wind energy potential Renew Sustain Energ Rev 2014; 40:820-5.
Andrade C.F., Neto H.F.M., Rocha P.A.C., & Silva M.E.V. 2014. An efficiency comparison of numerical methods for determining Weibull parameters for wind energy applications: a new approach applied to the northeast region of Brazil Energ Convers Manag 2014; 86:801-8.
Khahro S.F., Tabbassum K., Soomro A.M., Dong L., & Liao X. 2014. Evaluation of wind power production prospective and weibull parameter estimation methods for Babaurband, Sindh Pakistan Energ Convers Manag 2014; 78:956-67.
Werapun W., Tirawanichakul Y., & Waewsak J. 2015. Comparative study of five methods to estimate weibull parameters for wind speed on Phangan Island, Thailand Energ; 79: pp. 976-81.
Kurban, M., Kantar, Y.M., Hocaoğlu F.O. 2007. Weibull dağılımı kullanılarak rüzgar hız ve güç yoğunluklarının istatistiksel analizi Afyon Kocatepe Univ Fen Müh Bilim Derg; 7: 205-18 (in Turkish).
Usta I., Kantar Y.M. 2012. Analysis of some flexible families of distributions for estimation of wind speed distributions. Appl Energy; 89:355-67.
Bilir L., Imir M., Devrim Y., Albostan A. 2015. An investigation on wind energy potential and small scale, wind turbine performance at Incek region – Ankara, Turkey Energ Convers Manag; 103:910-23.
Kantar Y.M., Usta I. 2015. Analysis of the upper-truncated weibull distribution for wind speed Energ. Convers Manag; 96:81–8.
Akgül, F. G., Şenoğlu, B., Arslan, T. 2016. An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution. Energ Convers Manag; 114:234-40.
Morgan, E. C., Lackner, M., Vogel, R. M., Baise, L. G. 2011. Probability distributions for offshore wind speeds Energ Convers Manag; 52:15-26.
Yuri A. Iriarte, Héctor Varela, Héctor J. Gómez and Héctor W. Gómez, A. 2020. Gamma-Type Distribution with Applications, symmetri, 12, 1-15, doi:10.3390/sym1205087
Qaisar R., Hafiz M. Y., Muhammad U., & Muhammad T. J. 2022. Three Parameters Quasi Gamma Distribution and with Properties and Applications, Pak.j.stat.oper.res, 18(3), 759-773, DOI: http://dx.doi.org/10.18187/pjsor.v18i3.3759
Shanker R, Shukla KK. 2016. On modeling of lifetime data using three-parameter generalized lindley and generalized gamma distributions. Biom Biostat Int J;4(7):283‒288.
DOI: 10.15406/bbij.2016.04.00117
E. B. Nkemnole and E. M. Ikegwu, 2020. Poly-Weighted Exponentiated Gamma Distribution with Application, Journal of Statistical Theory and Applications,19(3),446–459.
DOI: https://doi.org/10.2991/jsta.d.201016.002;
Suriya Jabeen and Bilal Para 2018. Exponentiated Gamma Exponential Distribution, Sohag J. Math. 5(3), DOI: http://dx.doi.org/10.18576/sjm/050301
Syaputra, A., Yendra, R., Marizal, M., Desvina, A. P., & Rahmadeni. 2022. "Wind Speed Modelling using Some Modified Gamma Distribution," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 6, pp. 87-95,2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I6P509
Sugian, E., Yendra, R., Marizal, M., & Rahmadeni. 2023. The Comparison Some Extended Weibull Distribution (Weibull (W), Exponentiated Weibull (EW), Exponentiated Exponential Weibull (EEW) and Additive Weibull (AW)) for the wind Speed Probability Modelling. International Journal Of Mathematics And Computer Research, 11(12), 3890-3893. https://doi.org/10.47191/ijmcr/v11i12.01
Noviadi, E. T., Adnan, A., Yendra, R., Rahmadeni, & Muhaijir, M. N. 2018. Identification the potential wind speed for energy in Pekanbaru using some simple mixture distribution modelling, Applied Mathematical Sciences, Vol. 12, no. 29, 1393-1401, doi: 10.12988/ams.2018.810139