Keywords:-
Article Content:-
Abstract
The main aim of the present paper is to apply the extended Riemann Liouville fractional derivative operator for finding some bilinear generating relations for extended Gauss hypergeometric function. Two main results are obtained, which are presented in the form of two theorems.
References:-
References
Agarwal. P, Choi. J, and Paris. R.B, Extended Riemann-Liouville fractional derivative operator and its applications, Journal of Nonlinear Science and applications. 8(2015), 451-466.
Saigo. M., A Remark on integral operations involving the Gauss hypergeometric functions Sn Math Rep. Kyushu University.
Kilbas. A. A., Marichev. O.I., Samko. S.G., Fractional integrals and derivatives, translated from the 1987 Russian original, Gordon & Breach, Yverdon, 1993.
Rainville. E. D., Special Functions, Macmillan, New York, 1960.
Seaborn. J. B., Hypergeometric functions & their applications.
Viryakova. V., All the special functions are fractional different integral of elementary functions, J. Phys., A (30) (1997), No 14, 5085-5103.
Millar. K.S., The mittag-Leffler & releted functions, Integral transforms, spec. Functions I (1993). No. 1, 41-49.
Lin S.D., Srivastava. H. M., & Wang. P. Y., Some fractional calculus Result for the H-function associated with a class of Feyman integrals, Russ. J. Math. Phyo. 13 (2006), No. 1, 94-100.
Kilbas. A.A. & Sebastian. N., Generalized Fractional integration of Bessel function of the first kind, Integral Transforms Spec. Funct. 19(2008). No. 11-12, 869-883.
Kilbas. A.A. & Sebastian. N., Fractional Integration of the product of Bessel Function of first kind, Fract. Calc. Apple. Anal 13(2010). No. 2, 159-175.
Baricz. A. & Sandor. J., Extensions of the Generalized Wilker inequality to Bessel functions, J. Math, Inequal 2(3), 397-406,2008.
Srivastava. H.M., An Introductory overview of Bessel Polynomials, the Generalized Bessel polynomials& q- Bessel polynomials, symmetry 2023, 15, 822.Doi.org/10.3390/symmetry 15040822.
Agarwal. P. Choi. J., Mathur. S. & Purohit. S.D., Certain new integral formula Involving the Generalized Bessel Functions, Bull, Korean Math. Soc.51 (2014), pp 995-1003, Doi.org/10.4134/BKMS 2014.51.4.995.
WATSON. G.N., A Treatise on the theory of Bessel Function, Cambridge University Press, Cambridge, 1994.
Dattoli. G. &Torre. A., Theory and Applications of Generalized Bessel Functions via Raffaele Garofalo,133/b 00173 Roma, ISBN, 88-7999-120-S.
Love. E. R., Some integral equations involving hypergeometric functions, Proceeding of the Edinburgh Mathematical Society vol.15, no.3, pp 169 -198, 1967.
Mc Bride. A.C., Fractional powers of a class of ordinary differential operators, Proceeding of the Londan Mathematical Society, Volume,45, no,3, pp 419-546,1982.
Kalla. S. L., Integral operators involving Fox’ H- function, Acta Mexicana de Ciencia, Technology, Volume. 3, pp. 117-122,1969.
Kalla. S.L., Integral operators involving Fox’ H – function, II, Volume.7, no,2, pp. 72-79, 1969.20
Kalla. S.L. &Saxena. R. K., Integral operators involving hypergeometric functions, Mathematical zeits chrift, Volume,108, pp. 231-234, 1969.
Saigo. M., A remark on integral operators involving the Gauss hypergeometric functions, Mathematical Reports of college of General Education, Kyushu, University, Volume.11, no.2,p p.,135-153,1978.
Saigo. M., A certain boundary value Problem for the Euler- Darboux equation., Mathematica Japonica, Volume, 24, no.4, pp- 377- 385, 1979.
Kilbas. A. A., Fractional Calculus of the Generalized Wright Function, Fractional Calculus & Applied Analysis, Volume, no.2, pp 113- 126, 2005.
Kiryakova. V., Generalized Fractional calculus & Application, Volume.301, Longman Scientific & Technical, Essex, UK, 1994.
Miller. K.S.& Ross. B., Introduction to the Fractional Calculus and Fractional Differential equations, Wiley- Inter-science, John Wiley & sons, New York, NY, USA,1993.
Agarwal. P., &Purohit. S.D., The Unified pathway fractional integral formulae, Journal of fractional calculus and applications, Volume.4, no .1, pp. 105-112,2013.
Iryna. T., Podlubny. I., & Richard L. M., Historical Survey Niels Hernik Abel & the birth of Fractional Calculus. An International Journal for theory and applications, Volume20, Number 5 (2017), ISSN 1311-0454