Keywords:-
Article Content:-
Abstract
The paper investigates the approximation properties of linear means of Fourier series generated by repeated application of the de la Vallée Poussin summation method. Asymptotic formulas for the exact upper bounds of deviations of the r-repeated de la Vallée Poussin means on the classes of Poisson integrals of functions with bounded generalized derivatives are obtained. The derived relations, under certain conditions, represent asymptotically exact equalities.
References:-
References
Stepanets A. I., Methodso of Approximation Theory, Leiden ; Boston : Brill : VSP, (2005).
Butzer P., Nessel R., Fourier analysis and approximation. One-dimentional theory, Birkha ̈user Verlag, Basel,( 1971).
DeVoreR.A., LorentzG.G., Constructive approximation, New York– Berlin, Springer, ( 1993).
Rovenskaya O. G., Novikov O. A., Approximation of Poisson integrals by repeated de la Vallee Poussin sums, Nonlinear Oscill. 13, (2010), 108–111.
Krasniqi X. Z., An application of a method of summability to Fourier series, Note di Matematica. 44, No 1, (2024), 1–11.
Krasniqi X. Z., Approximation of functions by superimposing of de la Vall ́ee Poussin mean into deferred matrix mean of their Fourier series in Holder metric with weight, Acta Math. Univ. Comenianae. 92, No 1, (2023), 35–54.
Nikol’skiy, S. M. Approximation of the functions by trigonometric polynomials in the mean. // Izv. Acad. Nauk. SSSR, Ser. Mat. vol. 10, №3, (1946, P. 207-256.
Stechkin, S. B. Estimation of the remainder of Fourier series for the differentiable functions. // Tr. Mat. Inst. Acad. Nauk SSSR. vol. 145, (1980), P. 126-151.
Rukasov, V. I., Novikov, O. A. Approximation of analytical functions by de la Vallee Poussin sums. // Tr. Inst. Mat. vol. 20, (1998), 228-241.
Rukasov V. I., Chaichenko S. O., Approximation of Analytic Periodic Functions by de la Vallee-Poussin Sums, Ukr. Math. J. 54, No 12, (2002), 2006–2024.
Serdyuk A. S., Approximation of Poisson Integrals by de la Vallee Poussin Sums, Ukr. Math. J. 56, No 1, (2004), 122–134.