Keywords:-

Keywords: ariational Inclusions, Spectral Gradient Methods, Nonmonotone Strategy.

Article Content:-

Abstract

Gradient descent algorithms perform well in convex optimization but can get tied for finding local minima in non-convex optimization. A robust method that combines a spectral approach
with nonmonotone line search strategy for solving variational inclusion problems is proposed. Spectral properties using eigenvalues information are used for accelerating the convergence.
Nonmonotonic behaviour is exhibited to relax descent property and escape local minima. Nonmonotone spectral conditions leverage adaptive search directions and global convergence for the proposed spectral subgradient algorithm.

References:-

References

Barzilai J., Borwein J. Two point step size gradient methods. J. Numer. Anal. 8, 141-148, 1988.

Bello-Cruz Y., Hazaimah O. On the weak and strong convergence of modified forward-backward-

half-forward splitting methods. Optimization Letters. (17) 3, 2022.

Bensoussan A., Goursat M., Lions J.L. Controle impulsionnel et inequations quasi-

variationnelles. Acad. Sci. Paris Ser. A 276, 1279–1284, 1973.

Cavazzuti E., Pappalardo M., Passacantando M. Nash equilibria, variational inequalities and

dynamical systems. Journal of Optimization Theory and Applications. 114, 491–506, 2002.

Cruz W.L., Raydan M. Nonmonotone spectral methods for large-scale nonlinear systems. Op-

timization Methods and Software, 18(5), 583–599, 2003.

Douglas J., Rachford H. On the numerical solution of heat conduction problems in two or three

space variables. Transactions of the American Mathematical Society. (82) 421-439, 1956.

Dupuis P., Nagurney A. Dynamical systems and variational inequalities. Annals of Operations

Research. 44, 9-42, 1993.

Giannessi F., Maugeri A., Pardalos P. Equilibrium oroblems: Nonsmooth optimization and

variational inequality models. Kluwer Academics Publishers, Holland. 2001.

Grippo L., Lampariello F., Lucidi S. A nonmonotone line search technique for Newton’s method.

SIAM J. Numer. Anal. 23, 707–716, 1986.

Kinderlehrer D., Stampacchia G. An Introduction to Variational Inequalities and Their Ap-

plications. Society for Industrial and Applied Mathematics (SIAM). Philadelphia, (2000).

Loreto M., Aponte H., Cores D., Raydan M. Nonsmooth Spectral gradient methods for uncon-

strained optimization. EURO Journal on Computational Optimization. DOI: 10.1007/s13675-

-0080-8, 2017.

Loreto M., Humphries T., Raghavan C., Wu K., Kwak S. A new spectral conjugate

subgradient method with application in computed tomography image reconstruction. 2024.

https://arxiv.org/abs/2309.15266v2

Loreto M., Xu Y., Kotval D. A numerical study of applying spectral-step subgradient method

for solving nonsmooth unconstrained optimization problems. Computers & Operations Re-

search. (104) 90-97, 2019.

Noor M.A., Noor K.I., Rassias M.T. New Trends in General Variational Inequalities. Acta

Appl Math. (170) 981–1064, 2020.

Tseng P. A modified forward-backward splitting method for maximal monotone mappings.

SIAM on Journal Control Optimization. (38) 431-446, 2000.

Stampacchia G. Formes bilineaires coercitives sur les ensembles convexes. Comptes Rendus

Acad. Sci. Paris. (258) 4413-4416, 1964.

Downloads

Citation Tools

How to Cite
Hazaimah, O. (2024). Nonmonotone Spectral Analysis for Variational Inclusions. International Journal Of Mathematics And Computer Research, 12(10), 4544-4552. https://doi.org/10.47191/ijmcr/v12i10.12