Keywords:-
Article Content:-
Abstract
Chickenpox is an infectious disease that causes an itchy, blister-like rash on the skin and can spread through bodily fluids and body contact. This study presents a mathematical model for the transmission dynamics of chickenpox among children by considering the impact of vaccination and treatment. The qualitative analysis of the model reveals that the model has two equilibrium points, namely: the chickenpox-free and endemic equilibrium points. The disease-free equilibrium point is globally asymptotically stable whenever the basic reproduction number is less than unity (R0<1) and the endemic equilibrium point is globally stable whenever the reproduction number is greater than unity (R0>1). The normalized forward sensitivity index is also used to obtain the critical factors responsible for the transmission of chickenpox in the population. Furthermore, it reveals that parameters with negative indices will reduce the transmission of chickenpox when increased. The qualitative analysis of the model is supported by numerical simulation
References:-
References
Center for Disease Control and Prevention (2011a). Chickenpox (Varicella) Signs and Symptoms. Retrieved 4 February 2015
Center for Disease Control and Prevention (2011b). Chickenpox (Varicella) Prevention and Treatment. Retrieved 4 February 2015
Wang Y., Jin Z., Yang Z., Zhang Z. K., Zhou T., Sun G. Q., Zhou F., Harpaz R., Jumaan A. O.,Winston C. A., Shefer-Jama A (2005). Impact of Varicella vaccination on healthcare utilization Stability Analysis of SIR model with distributed delay
Atkinson and Williams (2011). Epidemiology and prevention of Vaccine-Preventable Diseases (12ed.). Public Health Foundation. Pp. 301-323
Leeuwen, Anne (2015). Davis’s comprehensive handbook of laboratory and diagnostic tests withnursing implications. Philadelphia: F. A. Davis Company. p. 1579
O. A. Adepoju, H. O Ibrahim (2024a). An Optimal Control model for monkey- pox transmissiondynamics with vaccination and immunity loss following recovery., Healthcare Analytics,(6)100355. https:doi.org/10.1016/j.health.2024.100355
Abimbade, S. F., Chuma, F. M., Sangoniyi, S. O., Lebelo, R. S., Okosun, K. O., and Olaniyi, S.(2024). Global Dynamics of a Social Hierarchy-Stratified Malaria Model: Insight from Fractional Calculus. Mathematics, 12(10), 1593.
Adepoju O.A., Olaniyi S. (2021). Stability and optimal control of a disease model with verticaltransmission and saturated incidence.Sci. Afr. 12:e00800.
https://doi.org/10.1016/j.sciaf.2021.e00800
S. Olaniyi, K. O. Okosun, S. O. Adesanya & R. S. Lebelo (2020) Modelling malaria dynamics with partial immunity and protected travellers: optimal control and cost-effectiveness analysis, Journal of Biological Dynamics, 14:1, 90-115
DOI:10.1080/17513758.2020.1722265
Ali, H. A., Mohammed, A. o., Kirpal-Das, A. N., Hina, Z. H., Fatma, S. c., J., (2009).Chickenpox presentation and complications in adults. “J Pak Med Assoc “.59(12), 828- 831.
Ofori, M. M., (2011). Mathematical modeling of the epidemiology of varicella.
Stephen, T., Rachael, G., Whitney, L., Rana, N., (2014). Varicella zoster virus. “ Acneifrm eruptions in Dermatology A Differential Diagnosis “. 95-104.
Carrington, D., Ronald, F. L., Jack, D. S., Shali, M. T., Juan, P. K., Edi, V., Robeto, R., (2011). Varicella-zoster virus (chickenpox) infection in pregnancy.“International Journal of Obstetrics and Gynaecology “. 118(10), 1155-1162.
Shrim, A., Gideon, K., Mark, H. Y., Dan, F., Robet, G., Lynda, H., Melanie, B., Hayley, B., Joan, C., Gregory, V., Marie, F. D., Savas, M., William, M., Annie, O., Tracy, P.,Christy, P., Anne, R., Frank, S., Vyta, S., (2012). Management of varicella infection(chickenpox) in pregnancy.“ Obstetrics and Gynaecology, Canada “. 34(3), 287-292.
Corberan-Vallet A., Santonja F. J., Jornet-Sanz M., Villanueva R. J. (2018). ModelingChickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model. Hindawi.
https://doi.org/10.1155/2018/3060368
Katherine, S., Nina, W., Dan, W., (2018). Development of mathematical model of the spread of the chickenpox in a contained population.
Okolo, P. N., Abu, O., (2019). Stochastic modelling of chickenpox epidemics on networks.“Abacus (Mathematical Science Series) “. 44(1), 23-35.
Agbata, B. C., Omale, D., Ojih, P. B., Omatola, I. U., (2019). Mathematical analysis of chickenpox transmission dynamics with control measure. “Dio 10”, 6-23.
Bright, O. O., Andrew, O., Victory, A. I., (2019). Deterministic and stochastic models of thetransmission dynamics of chickenpox. “Nigeria Annals of Pure and Applied Sciences “.2, 184-192.
Umar, H., Saba, A., (2020). Generalized rash and bilateral retinal Necrosis in an adult health care worker after post-exposure herpes zoster vaccination.“Kansas Journal of Medcine“. 13(5), 324-334.
Zhang, N. A., Hongjie, Y. U., Yingjinw, W., Qin, P., Yueqin, S., Chunmei, D., Yefin, Z.,Shurong, D., Chuanlin, L., Ying, S., Yingyan, Z., Yue, C., Qingwu, J., Peison, Z.,Yibiao, Z., (2020). Influence of soarse particulate matter on chickenpox in jiasin district.“Envinronmental Research “. 190, 110039.
Karsai, J., Rita, C. K., Agnes, D., Zsuzsanna, M., Janos, D., Teodora, B., Gergely, D., Teodora,B., (2020). Modelling the transmission dynamics of varicella in Hungary. “Journal of Mathematics in Industry “. 10(1), 12-20.
Anebi, E., Terhelen, A., Ananed, R., (2021). Mathematical analysis of varicella zoster virusmodel. “Applied and Computational Mathematics “. 6(2), 20-30.
Sayooj Aby Jose, Raja R., J. Dianavinnarsi, D. Baleanu, A. Jirawattanapanit (2023).Mathematical modeling of chickenpox in Phuket: Efficacy of precautionary measures andbifurcationAnalysis. Biomedical Signal Processing and control. https/doi.org/10.1016/j.bspc.2023.104714
H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42(4) (2000), pp. 599–653.
Van den Driessche, P., and Watmough, J. (2002).Reproduction numbers and subthresholdendemic equilibria for compartmental models of disease transmission. Medical Biosciences. 180, 29-48
Diekmann, O., Heesterbeek, J. A. P. and Metz, J. A. J. (1990). On the definition and computation of the basic reproduction ratio in models for infectious diseases inheterogeneous populations. Journal of Mathematics Biology. 28, 365-382
Augusto B. F. and Gumel A. B. (2010). Theoretical assessment of avian influenza vaccine. Discrete and continuous dynamical System 13(1) 1-25 https://doi:10.3934/dcdsb.2010.13.1
Erinle-Ibrahim L. M., Adebimpe O., Lawal W. O. and Agbomola J. O (2022). A Mathematical Model and Sensitivity Analysis of Lassa fever with Relapse and Reinfection Rate. Tanzanian Journal of Science 48(2) 414-426
O.A. Adepoju, T. M. Olatunji, S. O. Olanrewaju, H. O. Ibrahim (2024b). Stability analysis of HIV/AIDS epidemic model with vertical transmission. Advances in Mathematics: Scientific Journal 13(3), 433-451. https://doi.org/10.37418/amsj.13.3.10
Huo H. F. and Feng L. X. (2013). Global stability for an HIV/AIDS epidemic model with different latent stages and treatment. Appl. Math. Mod. 37(3): 1480-1489.
O. A Adepoju, H. O. Ibrahim, W. O Salahu (2024c). Mathematical Assessment and Stability Analysis HIV/AIDS Epidemic model with Vertical Transmission and Treatment.Transpublika International Research in Exact Sciences
Lasalle J.P (1976). The Stability of Dynamical Systems. Philadelphia,PA SIAM.
https://doi.org/10.1137/1.9781611970432
Chitnis, N., Hyman, J. M. and Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of mathematical model. Bulletin of Mathematical Biology. 70, 1272-1296.
https://doi.org/10.1108/17410380910953720
Muhammad Abdurrahman Rois, Trisilowati and Ummu Habibah (2021). Local Sensitivity Analysis of COVID-19 Epidemic with Quarantine and Isolation using Normalized Index. Telematika 14(1) 13-24