Keywords:-

Keywords: Keywords: Lymphatic filariasis, Wolbachia, basic reproduction number, vector control, disease-free equilibrium, stability analysis

Article Content:-

Abstract

In this paper, we develop a mathematical model to analyze the transmission dynamics and control strategies for Lymphatic Filariasis (LF), incorporating both chemical and biological control measures targeting the disease vector. The model is proven to be both mathematically and epidemiologically sound. By determining the basic reproduction number (\(R_0\)), we establish the conditions for local and global stability of the disease-free equilibrium (DFE). The model highlights the impact of Wolbachia bacteria on mosquito populations and the role of drug resistance and recovery in human populations. Our results demonstrate that reducing \(R_0\) below 1 is crucial to eradicating LF from an endemic population, and thus, preventive measures, including vector control, are essential. Further research is recommended to optimize the combined use of chemical and biological controls to achieve long-term stability and disease eradication.

 

References:-

References

CDC, (2022). Parasites - lymphatic filariasis: centers for diseases control and prevention, https://www.cdc.gov/parasites/lymphaticfilariasis/epi.html.

Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases. Statistical methods in medical research, 2(1), 23-41.

Dreyer, G., Medeiros, Z., Netto, M. J., Leal, N. C., de Castro, L. G., & Piessens, W. F. (1999). Acute attacks in the extremities of persons living in an area endemic for bancroftian filariasis: differentiation of two syndromes. Transactions of the Royal Society of Tropical Medicine and Hygiene, 93(4), 413-417.

Mayengo, M. M., Kgosimore, M., & Chakraverty, S. (2020). Fuzzy Modeling for the Dynamics of Alcohol‐Related Health Risks with Changing Behaviors via Cultural Beliefs. Journal of Applied Mathematics, 2020(1), 8470681

Michael, E., Bundy, D. A. P., & Grenfell, B. T. (1996). Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology, 112(4), 409-428.

Mwamtobe, P. M., Simelane, S. M., Abelman, S., & Tchuenche, J. M. (2017). Mathematical analysis of a lymphatic filariasis model with quarantine and treatment. BMC Public Health. https://doi.org/10.1186/s12889-017-4160-8

Nutman, T. B., & Kazura, J. W. (2011). Lymphatic filariasis. In Tropical infectious diseases: principles, pathogens and practice (pp. 729-734). WB Saunders.

Peter Fischer, Sara M. Erickson, Kerstin Fischer, Jeremy F. Fuchs, Ramakrishna U. Rao, Bruce M. Christensen, Gary J. Weil, (2007). Persistence of brugia malayi dna in vector and non-vector mosquitoes: implications for xeno monitoring and transmission monitoring of lymphatic filariasis, Am. J. Trop. Med. Hyg. 76 (3)

Stolk, W. A., Van Oortmarssen, G. J., Pani, S. P., De Vlas, S. J., Subramanian, S., Das, P. K., & Habbema, J. D. F. (2005). Effects of ivermectin and diethylcarbamazine on microfilariae and overall microfilaria production in bancroftian filariasis. The American journal of tropical medicine and hygiene, 73(5), 881-887.

WHO. (2019). S filaria. Who, Morbidity, Managing Disability, Preventing Nationa.

WHO, (2022). Lymphatic filariasis: world health organisation, https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis/.

Silumbwe, A., Zulu, J. M., Halwindi, H., Jacobs, C., Zgambo, J., Dambe, R., ... & Michelo, C. (2017). A systematic review of factors that shape implementation of mass drug administration for lymphatic filariasis in sub-Saharan Africa. BMC public health, 17, 1-15.

Rogers, D. J., & Randolph, S. E. (2006). Climate change and vector-borne diseases: a global perspective. Journal of Travel Medicine, 13(1), 5-10.

Rojas, C. A., & Tien, C. (2016). Mathematical modeling of lymphatic filariasis transmission: A review. Journal of Theoretical Biology, 394, 102-113.

Alonso, D., & Bansal, S. (2017). Modeling the impact of mass drug administration on the transmission dynamics of lymphatic filariasis. PLOS Neglected Tropical Diseases, 11(4), e0005610.

Bockarie, M. J., et al. (2009). Lymphatic filariasis elimination in the Pacific: a mathematical modeling approach. BMC Public Health, 9, 2.

Ferguson, N. M., & Anderson, R. M. (1999). The effect of mass treatment on the transmission dynamics of lymphatic filariasis. Proceedings of the Royal Society B: Biological Sciences, 266(1424), 1637-1647.

World Health Organization (WHO). (2021). Lymphatic filariasis. WHO Fact Sheet.

Ottesen, E. A., & Hooper, P. J. (2008). Control of lymphatic filariasis. Advances in Parasitology, 66, 107-142. doi:10.1016/S0065-308X(08)00602-4.

Michael, E., et al. (2004). Lymphatic filariasis: a systematic review of the evidence for the effectiveness of mass drug administration. Tropical Medicine & International Health, 9(5), 1005-1015. doi:10.1111/j.1365-3156.2004.01278. x.

Becker, S. N., et al. (2018). Lymphatic filariasis: a global perspective on its epidemiology and control. Parasitology Research, 117(1), 217-227. doi:10.1007/s00436-017-5548-7.

Downloads

Citation Tools

How to Cite
Bashir, U., & Musa, S. (2024). Stability Analysis of the Disease-Free Equilibrium State for Lymphatic Filariasis with Chemical and Biological Control on Vector. International Journal Of Mathematics And Computer Research, 12(12), 4613-4632. https://doi.org/10.47191/ijmcr/v12i12.01