Keywords:-
Article Content:-
Abstract
Lassa fever is a viral hemorrhagic disease primarily transmitted through contact with food or household items contaminated by urine or feces of infected rodents. The disease poses a significant health risk in endemic regions, yet the effect of vertical transmission and non-linear treatment on its spread has not been thoroughly explored. To address this, a mathematical model was constructed to assess the effect of vertical transmission and non-linear treatment in the transmission dynamics of Lassa fever. The model was validated through the theory of positivity and boundedness, ensuring that its solution remains biologically meaningful over time. The existence of equilibrium points was examined and the basic reproduction number was calculated using the next generation matrix operator. Bifurcation analysis is performed using the Center Manifold Theory. The Local and global stability of the model around the Lassa fever free equilibrium is investigated using Jacobian Matrix method and the theorem proposed by Castillo-Chavez. The effect of the parameters of the basic reproduction number was investigated using normalized forward sensitivity index. Furthermore, it was inferred that decrease in the contact rate and the rate of vertical transmission were instrumental to curtailing the spread of Lassa fever in the population.
References:-
References
Abolaji T. A., Abdulwasiu. O. H., Ifeyi, Gladys P. and Emmanuel I. O (2023). Lassa Fever: Origin, Causes, Effect, Control and Prevention. DOI URL: http://dx.doi.org/10.58538/IJIAR/2009
Abdulrahim, A., Bashar, H. G., Uzairu, A., Usman, U. L. and Zaharaddin. M.K (2023). Recurring Outbreaks of Lassa Fever in Nigeria: Understanding the Root Causes and Strategies for the Future. Volume 18, Issue no. 1, DOI 10.18502/12745.
Adepoju, O. A., & Ibrahim, H. O. (2024). An optimal control model for monkeypox transmission dynamics with vaccination and immunity loss following recovery. Healthcare Analytics, 6, 100355.
Adepoju O. A., Olatunji T. M, Olanrewaju S. O. and Ibrahim H. O. (2024). Stability Analysis of HIV/AIDS Epidemic Model with Vertical Transmission. Advances in Mathematics: Scientific Journal 13(3), 433-451
Adepoju O. A., Ibrahim H. O. and W. O. Salau (2024). Mathematical Assessment and Stability Analysis of HIV/AIDS epidemic model with vertical transmission and treatment. Transpublika International Research in Exact Sciences 3(4) 1-20
Buckley, S. M., Cabals, J (1970). Lassa fever, a new virus disease of man from West Africa. American Journal of Tropical Medicine and Hygiene 1970 Vol., 19 No. 4 pp.680-91.
Carey, D. E., Kemp, G. E., White, H. A., Pinneo, L., Addy, R. F., Fom, A. L. and Henderson, B. E. (1972). Lassa fever epidemiological aspects of the 1970 epidemic, Jos, Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 66(3), 402408.
Center for Disease Control and Prevention (2014). Lassa Fever Fact Sheet, Center for Disease Control and Prevention, Atlanta, GA, USA.
Centers for Disease Control and Prevention (CDC. (2004). Awareness of family health history as a risk factor for disease--United States, 2004. MMWR. Morbidity and mortality weekly report, 53(44), 1044-1047.
Charrel, R. N., and de Lamballerie, X. (2003). Arenaviruses other than Lassa virus. Antiviral research, 57(1-2), 89-100.
Chinyere. A., Nwogo. A. O., Patrick. M. A., Chinedum. U. E., Chinedu. M. A., Chinedum. U. E., Chined. O. E., Olamide. J., Chuks. O. E., Olalekan. O. O., Obasi. U. O. and Ikechuku. A. (2023). Combating Lassa Fever in West African Sub-Region; Progress, Challenges, and Future Perspectives.doi;10.3390/v15010146.
Chitnis, N., Hyman, J. M. and Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bulletin of Mathematical Biology, Vol. 70, No. 5, Pp. 1272
Driessche, V. D., and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission," Mathematical Biosciences, Vol. 180, Pp. 2948.
Drosten, C., Gottig, S., Schilling, S., Asper, M., Panning, M., Schmitz, H. and Günther, S. (2002). Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassavirus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. Journal of clinical microbiology, 40(7), 2323-2330.
Favour. A. O. and Okeke. A. A (2020) Mathemati cal Model for Lassa Fever Transmission and Control. http://www.sciencepublishinggroup.com/j/mcs doi: 10.11648/j.mcs.20200506.13.
Fisher-Hoch, S. P., Hutwagner, L., Brown, B., and McCormick, J. B. (1995). Effective vaccine for Lassa fever. Journal of virology, 74(15), 6777-6783.
Folashade. B. A. (2024) Modeling Lassa fever in Nigeria with perception of risk. DOI: https://doi.org/10.21203/rs.3.rs-3824974/v1
Frame, J. D. (1970). Surveillance of Lassa fever in missionaries stationed in West Africa Bulletin of the World Health Organization, Vol. 52, No. 4-6, Pp. 593-598.
Higazy, M., El-Mesady, A., Mahdy, A. M. S., Ullah, S., and Al-Ghamdi, A. (2021). Numerical, approximate solutions, and optimal control on the deathly lassa hemorrhagic fever disease in pregnant women. Journal of Function Spaces, 2021, 1-15.
Holmes, G. P., McCormick, J. B., Trock, S. C., Chase, R. A., Lewis, S. M., Mason, C. A., and Fisher-Hoch, S. P. (1990). Lassa fever in the United States. New England Journal of Medicine, 323(16), 1120-1123.
Ibrahim. M. A., Attila. D (2021) A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in Nigeria.
DOI: 10.1016/j.nonrwa.2021.103310.
Ibrahim. R. I.H., Ali. R., Eugenio. R., Emad. F., Eman. A. and Muhammad. B (2024) The Effect of Delay Techniques on a Lassa Fever Epidemic Model. https://doi.org/10.1155/2024/2075354.
Jahrling, P. B., Hesse, R. A., Eddy, G. A., Johnson, K. M., Callis, R. T., and Stephen, E. L. (1980). Lassa virus infection of rhesus monkeys: pathogenesis and treatment with ribavirin. Journal of Infectious Diseases, 141(5), 580-589.
Johnson, M., Borremans, B., Kourouma, F. (1990). Evaluation of rodent control to fight Lassa fever based on field data and mathematical modelling," Emerging Microbesand Infection, Vol. 8, No. 1, 2019.
Lukashevich, I. S., Patterson, J., Carrion, R., Moshkoff, D., Ticer, A., Zapata, J., and Salvato, M. S. (2005). A live attenuated vaccine for Lassa fever made by reassortment of Lassa and Mopeia viruses. Journal of virology, 79(22), 13934-13942.
Madueme .P. U. and Faraimunashe. C (2022) Understanding the transmission pathways of Lassa fever: A mathematical modeling approach. http://creativecommons.org/licenses/by-nc-nd/4.0/ https://doi.org/10.1016/j.idm.2022.11.0102468-0427/.
Madueme P. U. and Faraimunashe. C (2024) A systematic review of mathematical models of Lassa fever. https://doi.org/10.1016/j.mbs.2024.109227.
McCormick, J. B., and Fisher-Hoch, S. P. (1987). Lassa fever in Current Topics in Microbiology and Immunology, Vol. 262, Pp. 75109, Springer, Berlin, Germany.
McCormick, J. B., Auperin, D., Brown, B. G., Castor, M., Perez, G., and Bauer, S. (1989). Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene. Proceedings of the National Academy of Sciences, 86(1), 317-321.
Monath, T. P. (1973). Lassa fever. Tropical doctor, 3(4), 155-161. Journals.sagepub.com.
Monath, T. P. (1975). Lassa fever: review of epidemiology and epizootiology. Bulletin of the World Health Organization, 52(4-6), 577.
Musa. S. S. Abdurrahman. A., Nafiu. H. and Daihai. H (2022) Mathematical analysis of Lassa fever epidemic with effects of environmental transmission. https://doi.org/10.1016/j.rinp.2022.105335
Ogwu. M. C., Strategies S. C.I and Kurotimipa. F. O (2022) Lassa fever in Nigeria: Social and Ecological Risk Factors Exacerbating Transmission and Sustainable Management. DOI: 10.23937/2643-461X/1710065 Volume 5.
Ojo. M. M and Emile. F. D. G. (2022) Modeling, analyzing and simulating the dynamics of Lassa fever in Nigeria. https://doi.org/10.1186/s42787-022-00138-x
Okpar. P.A and Sunday. N. A (2024) A Mathematical Model of Lassa Fever Transmission and Control in Ebonyi State, Nigeria. Vol. 12, No. 2, pp. 24-36 https://doi.org/10.11648/j.ajam.20241202.11
Olowu. O. O and Ako I.I (2021) Mathematical Modelling of the Impact of Reduced Infection on Lassa Haemorrhagic Fever Transmission Dynamics: A Theoretical Study. Vol. 39, https:/www.researchgate.net/publication/371789894
Omale. D., William. A., Remigius. O. A., David. O., Queeneth. O. A., Godwin. O. A., Jeremiah. A (2024) Fractional mathematical model for the transmission dynamics and control of Lassa fever. https://doi.org/10.1016/j.fraope.2024.100110
Omoloye. M. A., Akeem. O. S., Iyabo O. S and Titilope. F. A (2021) Modeling and Sensitivity Analysis of Dynamical Transmission of Lassa Fever. DOI: https://doi.org/10.52403/ijrr.20211067 Vol.8;
Popoola .O. T., Sodiq. I. Y., Iyiola. O. O., Kunle. O and Olufunmilayo. V. B (2022) Addressing the Lassa Fever Epidemic in West Africa: A Mathematical Modelling Approach.
doi: 10.31646/gbio.172.
Schmitz, H., Köhler, B., Laue, T., Drosten, C., Veldkamp, P. J., Günther, S., and Hoerauf, A. (2002). Monitoring of clinical and laboratory data in two cases of imported Lassa fever. Microbes and infection, 4(1), 43-50.
Tomori, O., Nasidi, A., Perez-Oronoz, G. I., Fakile, Y., Hutwagner, L., and McCormick, J. B. (1995). Review of cases of nosocomial Lassa fever in Nigeria: the high price.
World Health Organization (2023), Fact Sheet on Lassa Fever, World Health Organization, Geneva, Switzerland.
Wulff, H., Lange, J. V., and Webb, P. A. (1978). Interrelationships among arenaviruses measured by indirect immunofluorescence. Intervirology, 9(6), 344-350.