Keywords:-
Article Content:-
Abstract
In this paper, first we prove that, let R be a prime *- ring .If R admits a generalized *- higher derivation f with an associated non zero reverse *- higher derivation d then either dx,dz 0(or) f is a left *multiplier. And next we prove that, let R be a prime ring, if R admits a generalized * left higher derivation associated with * left higher derivation d, then either dy,dz 0 (or) f is a right * multiplier.
References:-
References
Bresar, M.Jordan derivations on semi prime rings Proc.Amer.Math.Soc.104 (4).1003-1006 (1988).
Bresar, M.Jordan mappings of semi prime rings .J.Algebra 127. 218-228 (989).
Herstein, I.N.Jordan derivations of prime rings .Proc Amer.Math.Soc. 8 .1104-1110 (1957)
Hvala, B.Generalized derivations in rings .Comm. Algebra 26 (4). 1147-1166 (1998).
Ashraf, M., Rehman, N.: on Jordan generalized derivations in rings. Math.J.Okayama Univ.42. 7-9
(2000).
Ferrero, M. Haetinger, C. Higher derivations and theorem by Herstein.Quaestiones Mathematicae
(2). 249-257 (2002).
Jacobson N.: Basic Algebra II. (Ed.W.H.Freeman and Comp., San Francisco) (1980)
Herstein, I.N.Topics in ring theory. (Ed.The University of Chicago Press, Chicago) (1969)
Bresar, M.Vukman, J. Jordan derivations on Prime rings .Bull. Austral .Math.Soc.37. 321-322 (1988)
I.N .Herstein, Jordan derivations of prime rings.Proc.Amer.Math.Soc. 8 (1957), 1104 – 1110.