Keywords:-

Keywords: Higher derivation, Generalized higher derivation, *- higher derivation *- generalized higher derivation, reverse *- derivation, commutator.

Article Content:-

Abstract

In this paper, first we prove that, let R be a prime *- ring .If R admits a generalized *- higher derivation f with an associated non zero reverse *- higher derivation d then either dx,dz  0(or) f is a left *multiplier. And next we prove that, let R be a prime ring, if R admits a generalized * left higher derivation associated with * left higher derivation d, then either dy,dz  0 (or) f is a right * multiplier.

References:-

References

Bresar, M.Jordan derivations on semi prime rings Proc.Amer.Math.Soc.104 (4).1003-1006 (1988).

Bresar, M.Jordan mappings of semi prime rings .J.Algebra 127. 218-228 (989).

Herstein, I.N.Jordan derivations of prime rings .Proc Amer.Math.Soc. 8 .1104-1110 (1957)

Hvala, B.Generalized derivations in rings .Comm. Algebra 26 (4). 1147-1166 (1998).

Ashraf, M., Rehman, N.: on Jordan generalized derivations in rings. Math.J.Okayama Univ.42. 7-9

(2000).

Ferrero, M. Haetinger, C. Higher derivations and theorem by Herstein.Quaestiones Mathematicae

(2). 249-257 (2002).

Jacobson N.: Basic Algebra II. (Ed.W.H.Freeman and Comp., San Francisco) (1980)

Herstein, I.N.Topics in ring theory. (Ed.The University of Chicago Press, Chicago) (1969)

Bresar, M.Vukman, J. Jordan derivations on Prime rings .Bull. Austral .Math.Soc.37. 321-322 (1988)

I.N .Herstein, Jordan derivations of prime rings.Proc.Amer.Math.Soc. 8 (1957), 1104 – 1110.

Downloads

Citation Tools

How to Cite
Bharathi, D. D., & Ravi, P. (2015). Generalized * - Higher Derivation on Prime * - Rings. International Journal Of Mathematics And Computer Research, 3(02), 908-912. Retrieved from https://ijmcr.in/index.php/ijmcr/article/view/84