Keywords:-

Keywords: Differnetiable manifold, projection operators, Nijenhuis tensor, metric and kernel.

Article Content:-

Abstract

In this paper, we have studied various properties of the F- sturcture manifold satisfying 2 1 0 k F F    where k is positive integer. Nijenhuis tensor F-structures and kernel have also been discussed.

References:-

References

A Bejancu: On semi-invariant submanifolds of an almost contact metric manifold. An Stiint

Univ., "A.I.I. Cuza" Lasi Sec. Ia Mat. (Supplement) 1981, 17-21.

 2. B. Prasad: Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull

Malaysian Math. Soc. (Second Series) 21 (1988), 21-26.

 3. F. Careres: Linear invairant of Riemannian product manifold, Math Proc. Cambridge

Phil. Soc. 91 (1982), 99-106.

 4. Endo Hiroshi: On invariant sub manifolds of connect metric manifolds, Indian J.

Pure Appl. Math 22 (6) (June-1991), 449-453.

 5. H.B. Pandey & A. Kumar: Anti-invariant sub manifold of almost para contact

manifold. Prog. Of Maths Volume 21(1): 1987.

 6. K. Yano: On a structure defined by a tensor field f of the type (1,1) satisfying f3+f=0.

Tensor N.S., 14 (1963), 99-109.R. Nivas & S. Yadav: On CR-structures and F 2 3,2    - HSU - structure

satisfying 2 3 2 0 r F F      , Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012).

 8. Abhisek Singh, Ramesh Kumar Pandey & Sachin Khare : On horizontal and

complete lifts of (1,1) tensor fields F satisfying the structure equation

F2k  S,S =0. International Journal of Mathematics and soft computing. Vol. 6, No. 1

(2016), 143-152, ISSN 2249-3328

Downloads

Citation Tools

How to Cite
Singh, L., & Gautam, S. K. (2016). On The Structure Equation 2 1 0. International Journal Of Mathematics And Computer Research, 4(11), 1685-1690. Retrieved from https://ijmcr.in/index.php/ijmcr/article/view/87