Keywords:-

Keywords: Heptadiagonal matrices, decomposition, CL factorization, matrix inverse.

Article Content:-

Abstract

The main contribution of this paper is a new CL type decomposition of heptadiagonal matrices
for fast inversion. We further provide two algorithms and study their execution times to measure
the benefit of the proposed decomposition. Therefore, we are able to obtain a number of
interesting results.

References:-

References

Sogabe T (2008) A fast numerical algorithm for the determinant of a pentadiagonal matrix.

Appl Math Comput 196(2):835–841

Losonczi L (2021) Determinants of some pentadiagonal matrices. Glasnik Matematicki

(2):271–286

general pentadiagonal Toeplitz matrices. Comput Math Appl 71(4):1036–1044

S.M. El-Sayed, D. Kaya, An application of the ADM to seven order Sawada Kotara equations,

Appl. Math. Comput. 157 (2004) 93-101.

Jie Shen, Tao Tang, Spectral and High-Order Methods with Applications, Science Press,

Beijing, 2006

J. Monterde, H. Ugail, A general 4th-order PDE method to generate bezier surfaces from

the boundary, Comput. Aided Geom. Design 23 (2006) 208-225.

P.G. Patil, Y.S. Swamy, An eficient model for vibration control by piezoelectric smart structure

using finite element method, Eur. J. Comput. Sci. Netw.Secu. 8 (2008) 258-264.

J.S. Respondek, Numerical recipes for the high efficient inverse of the confluent Vandermonde

matrices, Appl. Math. Comput. 218 (2011) 2044-2054.

J.S. Respondek, Recursive numerical recipes for the high efficient inversion of the confluent

Vandermonde matrices, Appl. Math. Comput. 225 (2013)718-730.

H. Li, D. Zhao, An extension of the Golden-Thompson theorem, J. Inequal.Appl. (2014).

H.Y. Li, Z.G. Gong, D. Zhao, Least squares solutions of the matrix equation AXB+CYD=E

with the least norm for symmetric arrowhead matrices, Appl.Math. Comput. 226 (2014)

-724.

Burden RL, Faires JD, Burden AM (2015) Numerical analysis. Cengage Learning, Boston

A. Hadj, M. Elouafi, A fast numerical algorithm for the inverse of a tridiagonal and pentadiagonal

matrix, Appl. Math. Comput. 202 (2008) 441-445.

D. Aiat Hadj, M. Elouafi the characteristic polynomial, eigenvectors and determinant of a

pentadiagonal matrix, Appl. Math.Comput. 198 (2) (2008) 634-642

L. Verde-Star, Elementary triangular matrices and inverses of k-Hessenberg and triangular

matrices, Spec. Matrices 3 (2015), 250256.

R. Slowik, Inverses and Determinants of Toeplitz-Hessenberg Matrices, TAIWANESE

JOURNAL OF MATHEMATICS. Vol. 22, No. 4, pp. 901–908, August 2018.

J. Abderram´an Marrero and V. Tomeo, On the closed representation for the inverses of

Hessenberg matrices, J. Comput. Appl. Math. 236 (2012), no. 12, 2962-2970.

J. Abderram´an Marrero, V. Tomeo and E. Torrano, On inverses of infinite Hessenberg

matrices, J. Comput. Appl. Math. 275 (2015), 356-365.

B. Bukhberger and G. A. Emel’yanenko, Methods of inverting tridiagonal matrices, USSR

Comput. Math. and Math. Phys. 13 (1973), no. 3, 10-20.

B. A. Turlach, W. N. Venables, and S. J. Wright. Simultaneous variable selection. Technometrics,

(3):349–363, 2005.

Y. Ikebe, On inverses of Hessenberg matrices, Linear Algebra Appl. 24 (1979), 93-97.

J.Maroulas, Factorization of Hessenberg matrices, Linear Algebra Appl. 506 (2016), 226-243.

M. Merca, A note on the determinant of a Toeplitz-Hessenberg matrix, Spec. Matrices 2

(2014), 10-16.

D. M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with applications

to sparse principal components and canonical correlation analysis. Biostatistics,

(3):515–534, 2009.

T. T. Wu and K. Lange. Coordinate descent algorithms for Lasso penalized regression.

Annals of Applied Statistics, 2(1):224–244, 2008.

Downloads

Citation Tools

How to Cite
Talibi, B., AIAT HADJ, A., & SARSRI, D. (2025). On the heptadiagonal matrix CL factorization. International Journal Of Mathematics And Computer Research, 13(2), 4808-4817. https://doi.org/10.47191/ijmcr/v13i2.02