Keywords:-
Article Content:-
Abstract
The aim of this paper is to evaluate and extend the G-Symbole into three variables which is a special cases of Appell’s Function.
References:-
References
Agrawal, R. P. (1965). An Extension of Meijer’s G-function. Proc. natn. Inst. Sci. India, 31, 536.
Appel, P., and Kampe de Feriet, M. J. (1926). Functions hypergeomeriques et hyperspheriques, Paris.
E.E. Fitchard and V. Franco, (1980). Differential Properties of Meijer’s G-function. - J. Phys. A 13, 2331-2340.
Erdelyi, A., et al. (Ed.) (1953). Higher Transcendental FunctiRons, vol. I. Bateman Project.
Gupta, K. C. (1964). On the inverse Meijer Transform of the G-function. Collnea. math., 14, 45-54.
Gupta, S. C. (1969). Integrals involving products of G-functions. Proc. natn. Acad. Sci. India, 39(A), 193-200.
K. Roach, (1997). Meijer’s G-function Representations. ISSAC 97- proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation. ACM, New York, 205-211.
Meijer, C. S. (1941). Multiplications theorem fur die Function (z). Proc. Ned. Akad. Wet., 44, 1062-1070.
Ragab, F. M. (1963). Expansions of kampe de Feriet’s double hypergeometric Functions of higher order. J. reine angew. Math., 212, 113-119.
R.A. Askey, (2010). Meijer G-function. In: NIST Handbook of Mathematical Functions. D. Adri, B. Olde (Eds.) Cambridge University Press, Cambridge.
Thakur, A.K. .etal , ‘Some result on Meijers G- function’’ , Ripples , 0973-6352 ,2011.