Keywords:-

Keywords: modular equations, hypergeometric series.

Article Content:-

Abstract

The object of this article is to give new and simple proof of all but
one Ramanujan’s modular equations of degree 3.

References:-

References

N. D. Baruah and R. Barman, Certain theta function identities and Ramanujan’s modular equations of degree 3, Indian J. Math., 48(3)(2006), 113-133.

B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.

M. Hanna, The modular equations, Proc. London Math. Soc., s2- 28(1928), 46-52.

C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Sumptibus Fratrum Borntr¨ager, Regiomonti, 1829.

C. G. J. Jacobi, Gesammelte Werke, Erster Band, G. Reimer, Berlin, 1881.

A. M. Legendre, Trait´e des Fonctions Elliptiques, t. 1, Huzard-Courcier, Paris, (1825).

S. Ramanujan Notebook (volume 2), Tata institute of fundamental Research, Bombay, 1957.

L. -C. Shen, On the modular equations of degree 3, Proc. Amer. Math. Soc., 122(4), 1994, 1101-1114.

Downloads

Citation Tools

How to Cite
D, D., K. S., J., & Manjunatha, M. (2024). On Ramanujan’s modular equations of degree three. International Journal Of Mathematics And Computer Research, 12(10), 4489-4501. https://doi.org/10.47191/ijmcr/v12i10.06

Most read articles by the same author(s)