Keywords:-
Article Content:-
Abstract
The objective of this paper is to establish explicit formulas for certain
restricted partition function in terms of divisor function
References:-
References
C. Adiga and K. R. Vasuki, On sums of triangular numbers, Math. Student,
(1-4), (2001) 185-190.
Z. Ahmed, N. D. Baruah, and M. G. Dastidar, New congruences modulo
for the number of 2-color partitions, J. Number Theory, 157(2015),
–198.
N. D. Baruah and B. K. Sarmah, Identities and congruences for the general
partition and Ramanujan’s tau functions, Indian J. Pure Appl. Math.,
(5) (2013), 643–671.
N. D. Baruah and R. Barman, Certain theta- function identities and modular
equation equations of degree 3, Indian J. Math., 48(2001), 185-190.
B. C. Berndt, Ramanujan notebooks, Part III, Springer-Verlag, New York, 1991.
H. C. Chan, Ramanujan’s cubic continued fraction and an analog of his
“most beautiful identity”, Int. J. Number Theory, 3(2010), 673-680.
M. D. Hirschhorn, The Power of q - A Personal Journey, Springer-2017.
Mahadevaswamy, Ramanujan’s modular equations of degree seven and
eleven, Ph.D thesis submitted to the University of Mysore, September
-2020.
S. Ramanujan, Notebooks (2 volumes), Tata institute of fundamental Research,
Bombay, 1957.
N. Saikia and C. Boruah, Arithmetic properties of partition 5 and 7 tuples
with odd parts distinct, Palestine Journal of Mathematics, 7(1)(2018),
–150.
K. R Vasuki and R. G. Veeresha, On Ramanujan’s modular equation of
degree 7, J. Number Theory, 153(2015), 304-308.
Downloads
Citation Tools
Most read articles by the same author(s)
- Darshan D, Jeshma Prakruthi K. S., M Manjunatha, On Ramanujan’s modular equations of degree three , International Journal Of Mathematics And Computer Research: Vol 12 No 10 (2024): VOLUME 12 ISSUE 10